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Kalray

A complete offer or data-intensive applications

Two application domains:

Data Center acceleration

• Compression and
decompression

• Encryption and decryption
• Erasure coding
• De-duplication

Computing

• Machine Learning
• Computer vision
• Pre/post processing
• Signal processing
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Kalray

Kalray MPPA® scalable many-core architecture

3rd-gen MPPA® processor: in TSMC 16nm technology, up to 1.2 GHz
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Kalray

MPPA3 V2 Coolidge™ processing element (PE)

6-issue 64-bit VLIW core with a tightly-coupled tensor coprocessor
VLIW Core

• Scalar 32-bit and 64-bit INT & FP
• 8× 8-bit, 4× 16-bit, 2× 32-bit SIMD
• 128-bit 256-bit SIMD operations by

bundling multiple instructions
• 256-bit load/store unit with masking

Tensor Coprocessor
• Matrix multiply-add on 4 × 4 tiles
• 512-bit multiply and add operands
• Matrix zip/unzip & transpose
• 256-bit load/store unit with masking
• Blocks of 256-bit registers used as

circular buffer or as lookup table
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Kalray

Coprocessor collective tensor operations

• PE operation: INT8.32
(4 × 16) · (16 × 4)+ = (4 × 4)

• Macro-scheme executed by 4 PEs

• 8× 256-bit memory loads (XLO)
per PE

• 8× 256-bit data exchanges per
PE

• 8× matrix multiply-add
operations per PE

• Matrix A and B are loaded by quarter by
each PE which exchange one quarter
with 2 different PEs

• Kernel for INT8.32:
(16 × 32) · (32 × 16)+ = (16 × 16)
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Kalray

Coprocessor Matrix multiply-accumulate operations
8-bit to 32-bit int matrix multiply-add: (4 × 16)int8 · (16 × 4)int8+ = (4 × 4)int32
16-bit to 32-bit FP matrix multiply-add: (4 × 8)FP16 · (8 × 4)FP16+ = (4 × 4)FP32
Signature

• 512-bit × 512-bit += 512-bit
• 256-bit register-pair multiplicands
• 256-bit register-pair accumulator

Performances
• 256 MADD eq. per cycle, 512 ops/c
• 128 FMA eq. per cycle, 256 flops/c
• 50 TOPS @1.2 GHz for 80 cores
• 25 TFLOPS @1.2 GHz for 80 core
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Floating point linear algebra

Orégane Desrentes Hardware linear algebra for small FP 8 . 1 / 36



Floating point linear algebra On number formats

Floating-Point numbers

• Computer representation for real numbers

• R is infinite in range and precision
• A computer is finite, in base 2
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Floating point linear algebra On number formats

Floating-Point numbers

• Computer representation for real numbers
• R is infinite in range and precision
• A computer is finite, in base 2

(−1)S × 2E × 1.F

S, E , F are stored in binary, in a finite format.

For floats: wS = 1,wE = 8,wF = 23
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Floating point linear algebra On number formats

Floating-Point special values

• +0,−0

• S = sign
• E = 0
• F = 0

• +∞,−∞

• S = sign
• E = 2wE − 1 (max number)
• F = 0

• NaN

• S = any
• E = 2wE − 1
• F ̸= 0

Orégane Desrentes Hardware linear algebra for small FP 10 . 1 / 36



Floating point linear algebra On number formats

Floating-Point special values

• +0,−0
• S = sign
• E = 0
• F = 0

• +∞,−∞

• S = sign
• E = 2wE − 1 (max number)
• F = 0

• NaN

• S = any
• E = 2wE − 1
• F ̸= 0

Orégane Desrentes Hardware linear algebra for small FP 10 . 2 / 36



Floating point linear algebra On number formats

Floating-Point special values

• +0,−0
• S = sign
• E = 0
• F = 0

• +∞,−∞

• S = sign
• E = 2wE − 1 (max number)
• F = 0

• NaN

• S = any
• E = 2wE − 1
• F ̸= 0

Orégane Desrentes Hardware linear algebra for small FP 10 . 3 / 36



Floating point linear algebra On number formats

Floating-Point special values

• +0,−0
• S = sign
• E = 0
• F = 0

• +∞,−∞
• S = sign
• E = 2wE − 1 (max number)
• F = 0

• NaN

• S = any
• E = 2wE − 1
• F ̸= 0

Orégane Desrentes Hardware linear algebra for small FP 10 . 4 / 36



Floating point linear algebra On number formats

Floating-Point special values

• +0,−0
• S = sign
• E = 0
• F = 0

• +∞,−∞
• S = sign
• E = 2wE − 1 (max number)
• F = 0

• NaN

• S = any
• E = 2wE − 1
• F ̸= 0

Orégane Desrentes Hardware linear algebra for small FP 10 . 5 / 36



Floating point linear algebra On number formats

Floating-Point special values

• +0,−0
• S = sign
• E = 0
• F = 0

• +∞,−∞
• S = sign
• E = 2wE − 1 (max number)
• F = 0

• NaN (2wF+1 − 2)
• S = any
• E = 2wE − 1
• F ̸= 0

Orégane Desrentes Hardware linear algebra for small FP 10 . 6 / 36



Floating point linear algebra On number formats

Floating-Point special values

• +0,−0
• S = sign
• E = 0
• F = 0

• +∞,−∞
• S = sign
• E = 2wE − 1 (max number)
• F = 0

• NaN (2wF+1 − 2)
• S = any
• E = 2wE − 1
• F ̸= 0

Orégane Desrentes Hardware linear algebra for small FP 10 . 7 / 36



Floating point linear algebra On number formats

Subnormals

0

Why we need them
Avoid numbers being flushed to 0 abruptly: gradual underflow.
Guarantees if x ̸= y then x − y ̸= 0 and other useful properties.

Why they are annoying
They have less precision than wF .
They are encoded differently: (−1)S × 2E × 0.F
Where the first significant bit ? 0.F = 0.000000011001100
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Floating point linear algebra On number formats

Subnormals

0

Why we need them
Avoid numbers being flushed to 0 abruptly: gradual underflow.
Guarantees if x ̸= y then x − y ̸= 0 and other useful properties.

Why they are annoying
They have less precision than wF .
They are encoded differently: (−1)S × 2E × 0.F
Where the first significant bit ? 0.F = 0.000000011001100

⇒ They used to be treated in micro-code but now we do subnormal
hardware
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Floating point linear algebra On number formats

Short and biased history of floating point units

Short and biased history of floating point units
• In the 70s, adders and multipliers

• R = ◦ (X + Y )
• R = ◦ (X × Y )

• In 1985, IEEE-754 standard normalises the rounding ◦ (. . . )
• In the 90s, FMA (fused multiply add): R = ◦ (X × Y + Z )

• These days:
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• In the 70s, adders and multipliers
• In 1985, IEEE-754 standard normalises the rounding ◦ (. . . )
• In the 90s, FMA (fused multiply add): R = ◦ (X × Y + Z )

• two operations in one instruction: faster
• one single rounding: more accurate

• These days:
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Short and biased history of floating point units
• In the 70s, adders and multipliers
• In 1985, IEEE-754 standard normalises the rounding ◦ (. . . )
• In the 90s, FMA (fused multiply add): R = ◦ (X × Y + Z )

• These days: R ≈ Z +
N−1∑
i=0

Xi × Yi
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Multiple applications
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scientific computing,. . . )
• Complex arithmetic (FFT,. . . )
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Short and biased history of floating point units
• In the 70s, adders and multipliers
• In 1985, IEEE-754 standard normalises the rounding ◦ (. . . )
• In the 90s, FMA (fused multiply add): R = ◦ (X × Y + Z )

• These days: R = ◦

(
Z +

N−1∑
i=0

Xi × Yi

)

Multiple applications
• Matrix multiplication (neural networks, graphical applications,

scientific computing,. . . )
• Complex arithmetic (FFT,. . . )

Objective: better than FMA chains

Z +
N−1∑
i=0

Xi × Yi ≈ ◦ (. . . ◦ (◦ (Z + X0 × Y0) + X1 × Y1) . . .+ XN × YN)
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Floating point linear algebra Basic operations

Product of floating point numbers

X0 Y0

+ ×

Negate

M0E0

Easy, but the result is not a IEEE-754 floating point number:

• Not rounded
• Signed significands
• Significands are not normalised

• Float is in [1,2[ but product is in [1,4[
• Product of normal and subnormal
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Floating point linear algebra Basic operations

Round a floating point number

Let’s consider a decimal float with 5 digits precision.
Round by adding 1

2 ulp (Unit in the Last Place) and truncating.

π ≈ 3.1415927 . . .
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Round a floating point number

Let’s consider a decimal float with 5 digits precision.
Round by adding 1

2 ulp (Unit in the Last Place) and truncating.

π ≈ 3.1415927 . . .

3.1415927
+ 0.00005
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x = −15416500
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Floating point linear algebra Basic operations

Round a floating point number

Let’s consider a decimal float with 5 digits precision.
Round by adding 1

2 ulp (Unit in the Last Place) and truncating.

π ≈ 3.1415927 . . .

3.1415927
+ 0.00005

3.1416427

x = −15416500

1.5416500
+ 0.00005

1.5417000

If exactly in the middle, round to an even float.
⇒ We need the following information to round:

3.141592654

goes in ◦(π)

boolean information: is this digit over or under 5 ? "round bit"

boolean information: is this 0 ? "sticky bit"
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Floating point linear algebra Basic operations

Sum of floating point numbers

FPΣ

E0 M0 . . . EN MN

R
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Floating point linear algebra Basic operations

Rounding the sum of two floating point numbers

We sort (E0,M0), (E1,M1) such that E0 ≥ E1

M0

M1+

M0

M1+
E0 − E1

M0

M1+
E0 − E1

E0 = E1

Sum like integers

E0 ≃ E1

Part of (shifted) M1 is added to
M0, and the rest is compressed
in a "sticky bit"

E0 ≫ E1

M1 is completely compressed in
a "sticky bit"
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Floating point linear algebra Basic operations

Rounding the sum of more than two floating point
numbers - problem !!

Problem: cancellation
M0 = −M1 and E0 ≫ E2
M0 + M1 + M2 = M2
If M2 has been totally
compressed in a sticky bit, we
cannot retrieve the result.

M0

M1

M2

+
+

E∗
0 − E∗

2

Problem: multi-sticky
E0 ≫ E1 and E0 ≫ E2
If M1 et M2 were compressed, we
cannot round the result M0

M0

M1

M2

+
+

E0 − E2

E0 − E1
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Floating point linear algebra Dot-product operators

An easy but expensive solution: the Kulisch
accumulator1

wfull

+
+

M0

M1

M2

E0

E1

E2

• Method:
• Convert to fixpoint
• Sum like integer
• Use Leading Zero Count to get final exponent and significand

• wfull = 2we + wf − 1
• Good when we is small (or for a format with little range like Int or

Posit when es ≤ 2)

1U. W. Kulisch, "Advanced Arithmetic for the Digital Computer: Design of
Arithmetic Units", 2002
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Floating point linear algebra Dot-product operators

Kulisch accumulator: Architecture

Size in bits for FP32 dot-product

LShift0 . . . LShiftN

M0

48

E0

9

MNEN

+
(compression tree)

559

. . .
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Floating point linear algebra Dot-product operators

Kulisch accumulator: Expensive and empty

wfull

+
+

M0

M1

M2

E0

E1

E2
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Floating point linear algebra Dot-product operators

A less expensive version: truncated Kulisch

+
+

wfull
wacc

M0

M1

M2

Emax − E0

Emax − E2

• Method similar to floating point sum:
• Choose wacc < wfull (arbitrarily)
• Align all numbers on the biggest one, throw away any bits that don’t

fill in wacc (no sticky, we don’t care)
• Sum like integer, round to float

• Inexact computation
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Floating point linear algebra Dot-product operators

Truncated Kulisch accumulator: Architecture
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Emax
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Emax
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+
(compression tree)
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Non monotonicity of truncated Kulisch

Recently presented in detail by Mantas Mikaitis.
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Compressed Kulisch (not truncated)1

Correctly rounded sum of products
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1O. Desrentes, B. Dupont de Dinechin, F. de Dinechin, "Exact Fused Dot Product
Add Operators"
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Architecture comparison

pKulischp

FPΣ

E0 M0 . . .
EN MN

. . .

Alignment (large but simple shift)

Expensive large integer addition

Retrieve result (large but
simple LZC and shift)

R

Compressed

FPΣ

E0 M0 . . .
EN MN

. . .

Alignment (very complicated )

Cheaper small integer addition

Retrieve result (small but
complicated LZC and shift)

R
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Results
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• The format has a lot of
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even for small N
• The format is more

balanced, wcompressed < wfull

for small N
• The format has a lot of

range compared to the
precision wcompressed < wfull

until larger N
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8 bits formats

Special values ?

8 bits is not a lot of bits (256 different values)

NaN

Having 2wF+1 − 2 NaN values is a waste of encoding space.
Should we keep at least one ? Yes

∞
Having 2 infinities is a waste of encoding space.
Should we keep them anyway ? Maybe

−0
Having 2 zeros is a waste of encoding space.
Should we keep −0 ? Maybe
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8 bits formats

Use of encoding space (E4M3 example)

IEEE-754-like:
+0 -0
sn -sn
sn -sn
sn -sn
sn -sn
sn -sn
sn -sn
sn -sn

+∞ −∞
NaN NaN
NaN NaN
NaN NaN
NaN NaN
NaN NaN
NaN NaN
NaN NaN
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8 bits formats

Use of encoding space (E4M3 example)

Graphcore1:
+0 NaN
sn -sn
sn -sn
sn -sn
sn -sn
sn -sn
sn -sn
sn -sn

1B. Noune, P. Jones, D. Justus, D. Masters, and C. Luschi, "8-bit numerical formats
for deep neural networks," 2022
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8 bits formats

Use of encoding space (E4M3 example)

Intel Arm NVIDIA2:
+0 -0
sn -sn
sn -sn
sn -sn
sn -sn
sn -sn
sn -sn
sn -sn

NaN NaN

2P. Micikevicius, D. Stosic, N. Burgess, M. Cornea, P. Dubey, R. Grisenthwaite, S.
Ha, A. Heinecke, P. Judd, J. Kamalu, N. Mellempudi, S. Oberman, M. Shoeybi, M. Siu,
and H. Wu, "Fp8 formats for deep learning," 2022
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8 bits formats

Use of encoding space (E4M3 example)

IEEE WG P3109 standard3:
0 NaN
sn -sn
sn -sn
sn -sn
sn -sn
sn -sn
sn -sn
sn -sn

+∞ −∞

3"IEEE Working Group P3109 Interim Report on 8-bit Binary Floating-point
Formats"
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8 bits formats

Use of encoding space (E4M3 example)

IEEE WG P3109 standard (with saturation)3:
+0 NaN
sn -sn
sn -sn
sn -sn
sn -sn
sn -sn
sn -sn
sn -sn

3"IEEE Working Group P3109 Interim Report on 8-bit Binary Floating-point
Formats"
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8 bits formats

Bias ?

For a real exponent E, it is encoded in the format like a positive
number, by adding a bias.

FP16 (IEEE-754)
wE 5
Bias 2wE−1 − 1 = 15
Max exp 2wE−1 − 1 = 15
Min exp −2wE−1 + 2 = −14
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8 bits formats

Bias ?

For a real exponent E, it is encoded in the format like a positive
number, by adding a bias.

FP16 (IEEE-754) E5M2 (until recently) E5M2 (IEEE WG P3109)
wE 5 5 5
Bias 2wE−1 − 1 = 15 2wE−1 − 1 = 15 2wE−1 = 16
Max exp 2wE−1 − 1 = 15 2wE−1 = 16 2wE − 1 = 15
Min exp −2wE−1 + 2 = −14 −2wE−1 + 2 = −14 −2wE−1 + 1 = −15
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8 bits formats

Block floating point

History
A vector of fixpoint numbers that share an exponent.

M0

M1

M2

M3

E

Recent variant
A vector of small floating point numbers that share a bias
modifier/scaling factor
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8 bits formats

Block floating point

History
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Recent variant
A vector of small floating point numbers that share a bias
modifier/scaling factor
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M1

M2

M3

E
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8 bits formats

Kulisch architecture for exact 8 bits dot product

LShift0 . . . LShiftN

M0

6

E0

6

MNEN

+
(compression tree)

64

. . . 127
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8 bits formats

Kulisch architecture for exact 8 bits dot product

Format Product Accumulator
size LSB MSB w MSB wacc

(in bits) (in bits)
INT8 8 × 8 0 15 16 31 32
E4M3 4 × 4 -18 16 36 44 63+1
E5M2 3 × 3 -32 30 64 94 127+1
Posit8.0 6 × 6 -6 6 26 50 63+1
Posit8.1 5 × 5 -24 24 50 38 63+1
Posit8.2 4 × 4 -48 48 98 78 127+1
Posit8.3 3 × 3 -96 96 194 158 255+1
FP16 11 × 11 -48 30 80 78 127+1
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8 bits formats

Comparison with other 8 bits formats: posits and
integers

Int8 E4M3 E5M2 Posit8.0
Posit8.1

Posit8.2
Posit8.3

FP16

0

5

10

15

20

25 Area (µm2 × 103)
Accumulator size (bits ×10)

Multiplier input size (bits)
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8 bits formats

How it is implemented in the MPPA

Instead of accumulating in large fixpoint, use a FP32

LShift0 . . . LShift15

LShiftacc

M0

8

E0

6

M15E15

MaccEacc

+
(compression tree)

70

. . .

+

74

Round and pack into FP32

124

32

acc
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Conclusion

Conclusion

Back to the 70s

• NVIDIA1 does some sort of truncated Kulisch with their
E5M2 and E4M3

• Intel2 is similar
• Arm3 is now doing some exact Kulisch with rounding by

block of 4 products, on E5M2 and E4M3 with scaling
factor

• Kalray is continuing the exact Kulisch with rounding by
block of 8? products, with E5M2 and E4M3 (but which
ones ?)

• IEEE WG P3109 formats are a description of everything
that can be done
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• Intel2 is similar
• Arm3 is now doing some exact Kulisch with rounding by

block of 4 products, on E5M2 and E4M3 with scaling
factor

• Kalray is continuing the exact Kulisch with rounding by
block of 8? products, with E5M2 and E4M3 (but which
ones ?)

• IEEE WG P3109 formats are a description of everything
that can be done

aB. Hickmann and D. Bradford, "Experimental analysis of
matrix multiplication functional units", 2019
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Conclusion

Back to the 70s

• NVIDIA1 does some sort of truncated Kulisch with their
E5M2 and E4M3

• Intel2 is similar

• Arm3 is now doing some exact Kulisch with rounding by
block of 4 products, on E5M2 and E4M3 with scaling
factor

• Kalray is continuing the exact Kulisch with rounding by
block of 8? products, with E5M2 and E4M3 (but which
ones ?)

• IEEE WG P3109 formats are a description of everything
that can be done

bB. Hickmann, J. Chen, M. Rotzin, A. Yang, M. Urbanski, S.
Avancha, "Intel Nervana Neural Network Processor-T
(NNP-T) Fused Floating Point Many-Term Dot Product", 2020
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Conclusion

Conclusion

Back to the 70s

• NVIDIA1 does some sort of truncated Kulisch with their
E5M2 and E4M3

• Intel2 is similar
• Arm3 is now doing some exact Kulisch with rounding by

block of 4 products, on E5M2 and E4M3 with scaling
factor

• Kalray is continuing the exact Kulisch with rounding by
block of 8? products, with E5M2 and E4M3 (but which
ones ?)

• IEEE WG P3109 formats are a description of everything
that can be done

cD. Lutz, A. Saini, M. Kroes, T. Elmer, H. Valsaraju, "Fused
FP8 4-Way Dot Product with Scaling and FP32
Accumulation", 2024
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