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Résumé

Dans un monde axé sur les données, 1’apprentissage artificiel et le calcul scien-
tifique sont devenus de plus en plus importants, justifiant 1’utilisation d’accélérateurs
matériels dédiés. Cette these explore la conception et I'implémentation d’unités
arithmétiques pour de tels accélérateurs dans le Massively Parallel Processor Array
de Kalray.

L’ apprentissage artificiel nécessite des multiplications de matrices qui operent sur
des formats de nombres tres petits. Dans ce contexte, cette these étudie I’'implémentation
du produit-scalaire-et-addition en précision mixte pour différents formats de 8 et 16
bits (FP8, INTS, Posit8, FP16, BF16), en utilisant des variantes d’une technique clas-
sique de I’état-de-1’art, I’accumulateur long. Elle introduit également des techniques
permettant de combiner différents formats d’entrée. Des méthodes radicalement
différentes sont étudiées pour passer a I’échelle vers la grande dynamique des formats
32 et 64 bits utilisés en calcul scientifique.

Cette these étudie également 1’évaluation de certaines fonctions élémentaires.
Un opérateur pour la fonction exponentielle (cruciale pour le calcul de la fonction
softmax) étend une architecture de 1’état-de-1’art pour accepter des formats d’entrée
multiples. La fonction racine carrée inverse (utilisée pour la normalisation des
couches) est accélérée en combinant des techniques d’état-de-1"art pour la réduction
de la dynamique, des tables multipartites correctement arrondies et des techniques
logicielles de raffinement itératif.

Mot-clefs : architecture des ordinateurs, arithmétique des ordinateurs, nombre
flottant, produit scalaire, fonctions élémentaires

Abstract

In a data-driven world, machine learning and scientific computing have become
increasingly important, justifying dedicated hardware accelerators. This thesis
explores the design and implementation of arithmetic units for such accelerators in
Kalray’s Massively Parallel Processor Array.

Machine learning requires matrix multiplications that operate on very small
number formats. In this context, this thesis studies the implementation of mixed-
precision dot-product-and-add for various 8-bit and 16-bit formats (FP8, INTS,
Posit8, FP16, BF16), using variants of a classic state-of-the-art technique, the
long accumulator. It also introduces techniques to combine various input formats.
Radically different methods are studied to scale to the larger range of 32-bit and
64-bit formats common in scientific computing.

This thesis also studies the evaluation of some elementary functions. An operator
for exponential function (crucial for softmax computations) extends a state-of-the-
art architecture to accept multiple input formats. The inverse square root function
(used for layer normalisation) is accelerated by combining state-of-the-art techniques
for range reduction, correctly rounded multipartite tables, and software iterative
refinement techniques.

Keywords: computer hardware, computer arithmetic, floating point, dot product,
elementary functions
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Introduction

In today’s data-driven world, there is a growing demand for advanced hardware
solutions capable of handling the complex computational requirements of machine
learning and scientific computing applications. This trend is pushed by the increasing
size and complexity of data sets, such as those used in deep learning models and
scientific simulations. These applications often involve processing vast amounts
of data in parallel and performing complex mathematical operations, which can be
computationally intensive and time-consuming.

These computational requirements have been growing exponentially since the
60’s, following the supply dictated by Moore’s Law: The number of transistors in
an integrated circuit doubles about every two years. While the promised growth in
computational power is running out of steam, the demand shows no sign of stopping
and, even worse, seems to snowball.

Deep learning models, for instance, involve training artificial neural networks
with large and intricate data sets, which can require significant computational re-
sources. Similarly, scientific simulations in fields such as global climate models,
molecular dynamics, and fluid dynamics can involve modelling complex physical
phenomena, which can also necessitate large-scale computations.

To address the pressing need for more efficient hardware solutions, researchers
and industry professionals have been exploring various approaches. One such ap-
proach is the development of manycore processors, which are designed to perform
multiple computations in parallel using a large number of processing cores. An
example of a manycore processor is the Massively Parallel Processor Array (MPPA)
developed by Kalray. Kalray is a fabless company specializing in manycore ac-
celerators for edge artificial intelligence and data centre storage applications. The
company’s mission is to provide high-performance and cost-efficient processing
solutions for data-intensive workloads.

During my tenure with the company, I had the opportunity to contribute to the
development of hardware accelerators for the MPPA as the designer for the floating-
point arithmetic units. The research presented in this thesis is a reflection of my work
on the MPPA and aims to contribute to the existing knowledge base, specifically in
the areas of matrix multiplication and numerical function implementations. Matrix
multiplication is a fundamental operation in many machine learning and scientific
computing applications, and efficient implementation of this operation is crucial for
achieving high performance. Numerical functions, such as square root and exponen-
tial functions, are also commonly used in these applications and their implementation
on hardware can significantly impact the overall performance of the system.

This thesis contributes to the field of computer arithmetic, which is the art of



implementing such mathematical operations in computing devices and studying their
properties, performance but also accuracy.

In this thesis, we propose novel designs for matrix multiplication and numerical
function implementations on the MPPA architecture. We evaluate the performance
of our designs using both theoretical analysis and simulations, and compare them
with state-of-the-art implementations.

This thesis is organised as follows:

In Part I, we provide the necessary context for understanding the motivation
behind our research. Chapter 1 provides an overview of how computers are con-
structed, from the microelectronics to the architecture of the system, highlighting the
various trade-offs imposed by physics and challenges faced by hardware designers.
Chapter 2 introduces general-purpose number formats: integers, fixed-point and
floating-point formats. Chapter 3 discusses the computational demands of machine
learning, and Chapter 4 describes the implementation of fixed-point arithmetic in
hardware.

In Part II, we focus on matrix multiplication, which is a fundamental operation in
machine learning algorithms. Chapter 5 discusses exact dot product algorithms for
small precisions. Chapter 6 relaxes exactness to be able to scale to larger precisions.
Chapter 7 presents methods for correctly rounding dot products in the large precisions
used in scientific computing.

Finally, in Part III, we explore the implementation of various numerical func-
tions on fixed-point hardware. Chapter 8 describes the state-of-the-art hardware
implementation methods for numerical functions, followed by Chapters 9 and 10,
which respectively focus on the implementation of the reciprocal square root and
exponential functions.

This thesis has lead to 2 patents and 4 publications, which are detailed in the
conclusion (see Chap. 10.4).



Part I

Context






Chapter 1

From Electronics to Computers

(...) a CPU is literally a rock that we tricked into thinking
not to oversimplify: first you have to flatten the rock and put lightning

inside it
— @daisyowl, 2017, on twitter
1.1 Electronics . . . . . . . . . . . .. e 8
1.1.1  Semiconductors and Diodes . . . .. ... ......... 8
1.1.2 Transistor . . . . . . . . ... . 10
1.1.3  Wires, Heat, and the Speed of Light . . . . . ... ... .. 14
1.1.4 Fanout . ... ... ... . ... ... 15
1.1.5 Clock . . . . .. 15
1.1.6 Moore’s Law and Miniaturisation . . . . ... ... . ... 16
1.2 Circuits . . . . . . . e e e e 17
1.2.1 LogicGates . . . . . . . . . . v 17
1.2.2  Assembling Gates into Operations . . . . . . .. ... ... 18
1.2.3 Pipelining . . . . . ... ... 19
1.2.4 Registers and Memories . . . . . ... ... ... ..... 19
1.2.5 Storage . . . . . . .. 21
1.2.6  Implementation of circuits: VLSI and FPGA . . . . . . .. 21
1.3 Computers . . . . . . . .. v e e e 24
1.3.1 Von Neumann Architecture . . . . . . .. ... ... .... 24
1.32 KalrayMPPA . . . . . ... ..o 25
1.4  Tools Aiding the Design of Circuits . . . . . ... ... ... ... 26
1.4.1 Synthesis placeandroute . . . . . . ... ... ... .... 27
142 FloPoCo . .. ... ... .. .. .. . 27

A computer is defined by the Cambridge dictionary as an electronic machine that
is used for storing, organising, and finding words, numbers, and pictures, for doing
calculations, and for controlling other machines.

Computers are everywhere, from coffee machines, to internet routers, phones,
mega-servers, and of course the personal computer used to write this thesis.

7
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As their name implies, a main application of computers is computing. Computers
operate on data that is stored in a way it can understand and access, called a memory.
They should be able to be programmed to do different computations depending on
the required task, or the contents of the data.

A computer as we imagine it often includes a keyboard, a monitor, a mouse. This
thesis focuses on the heart of the computer, the chip, which is a very large electronic
circuit, built on a plate of semiconductor material. Circuits are built with electronic
components like transistors and wires.

This chapter will first describe those electronic components, then how they are
assembled into circuits. It also discusses the overall architecture of a computer,
giving insight on how the arithmetic units designed in this thesis fit into the larger
computer system. Finally, it presents the various tools used to aid circuit design in
this thesis.

1.1 Electronics

As components get smaller, and computer systems grow larger and more complex,
physics gets harder to ignore for hardware designers. The metrics commonly used in
the literature to evaluate a circuit include its area, its power consumption, and the
time taken to perform the computation: the latency. Those metrics are linked, often
involving trade-offs where improving one metric worsens the others. This section
aims to provide insight on how design choices impact those metrics, and what are
the physical limitations impacting circuit design.

1.1.1 Semiconductors and Diodes

Semiconductor

Semiconductor materials like germanium or silicon are the basis for computers [89].
Those semiconductors are electric insulators at room temperature, but can conduct
electricity in specific cases.

A pure crystal of semiconductor is "doped" by adding impurities. It can be doped
positively (p-type) or negatively (n-type). p-type doping adds gallium or boron to
the semiconductor crystal, causing a lack of electrons, or a surplus of electron holes
compared to the pure crystal. n-fype doping is done by adding arsenic or phosphorus,
causing a surplus of electrons.

Simple Usage: a Diode

The simplest way a semiconductor is used is in a p-n junction diode (Fig. 1.1). This
means that the diode is made by placing a p-doped crystal next to a n-doped crystal.
When no tension is applied to the diode (Fig. 1.1), silicon at the junction exchange
electrons so that a small barrier of non-doped (and insulated) silicon is created. This
zone is called the depletion region.
When sufficient voltage (Fig. 1.2, left) is applied between the poles of the diode,
in this case from the — to the + pole, the diode lets current flow. This direction is
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Figure 1.1: p-n junction or diode (left) and its representation (right).
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Figure 1.2: Diode when positive voltage is applied (left) and when negative voltage
is applied (right).

called the forward bias of the diode. In this situation, electrons flow contrary to the
direction of the current, from the + pole to the — pole. If the voltage is large enough,
electrons charge negatively the silicon barrier from the negative side, reducing the
size of the depletion region. Once the barrier is removed, the current can flow.

When voltage is applied in the other direction, the reverse bias, current cannot
flow. The electrons, who would be circulating from the + to the — poles, meet
with positively charged silicon atoms, increasing the size of the depletion region of
insulating silicon (Fig. 1.2, right). This prevents the flow of current.

In essence, a diode can unidirectionally conduct electricity when the voltage
applied to it is greater than a threshold (0.7 V for silicon, 0.3V for germanium).
This property can be used, with some modification to the component, to create a
electronically controllable switch!.

Ip
A

Forward bias

Breakdown .
Reverse bias

— > Vp

[\ "

Current leakage Threshold
for sili-

con

Figure 1.3: Graph of the characteristic of a diode.

IA switch is a component that closes (current can pass) or opens (current cannot pass) an electrical
circuit. A common example is a light switch, where mechanical action from the user enables to close
the electrical circuit (turning on the lights) or to open the circuit (turning off the lights).
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If the voltage is too strong in reverse bias, the diode can break (Fig. 1.3). Broken
components can completely change the behaviour of a circuit, and exposing semi-
conductors to a voltage it cannot handle is to be avoided at all cost. In the remainder
of this thesis, it is assumed that semiconductors are all working.

Heat Generation

Some superficial currents can still be present in reverse bias, called leakage current.
The power dissipated by the diode is Pp = Vp X Ip, the voltage times the intensity
of the current. This dissipated power is exclusively transformed into heat. Leakage
current means that a diode will generate a little heat even when it is not conducting
electricity. When in forward bias, the diode generates a lot of heat, as a lot of current
passes through it.

Germanium was historically the first material used as semiconductor, as it is easier
to purify than silicon. However, silicon is the first choice for modern computers as it
i1s more energy efficient, with less current leakage, and easier to mass manufacture.

The voltage threshold for silicon is about 0.7 V at room temperature (25 °C), and
reduces by 2mV for every degree the temperature rises (about 0.6 V at 75°C). If
the voltage threshold gets too low, the functioning of the resulting circuit can be
altered. This makes temperature control and power dissipation in semiconductor
circuits crucial to their functioning.

1.1.2 Transistor

Current-Controlled Transistor

The first kind of transistor is a p-n-p junction or n-p-n junction (Fig. 1.4). The
transistor is connected to three wires, the gate (G), the drain (D) and the source (S).

)

D
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®ee0ooeee
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(a) p-n-p junction transistor. (b) n-p-n junction transistor.

Figure 1.4: Current-controlled transistors and their representation.

The gate controls whether current can pass through the transistor, as if it was
controlling a switch.

This type of transistor is controlled by variations in current. For example with a
n-p-n transistor, current flowing from G to S leads to electrons entering the p zone
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from G at the junction, and enables current to pass through from D to S. The same
thing happens in reverse for a p-n-p transistor.

Voltage-Controlled Transistor

000000
DOO®BoO D
Oxide D —1©@@®0|00
insulant 220 9O
0000606 —
G1oooooo S G —
0000006
DOO®BoO
S ®O®®00
cxexexciexs; S
0000606
(a) p-channel transistor.
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(b) n-channel transistor.

Figure 1.5: Voltage-controlled transistors and their representation.

In the case of computers, voltage controlled (Fig. 1.5) transistors are preferred to
current controlled ones.
The technology of transistors commonly used is called E-MOSFET:

e FET means Field Effect Transistor, which means that the transistor is controlled
by the electrical field (which is linked to the voltage).

e MOS means Metal-Oxide-Semiconductor, which is how the transistor is con-
structed: the gate is metal, the oxide electrically isolates the two sides of the
gate, and the other side of the capacity is the semiconductor.

¢ F means that it is a Enrichment MOSFET transistor, the transistor is off when
the voltage between the gate and the source is zero. The other way around
would be a Depletion MOSFET transistor.

Voltage controlled transistors (Fig. 1.6) have a capacity effect between the gate
and the semiconductor junction. When tension Vj;, is high, charges accumulate on
both sides of the capacity. This changes the state of the semiconductor and closes
the circuit between D and S.
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Figure 1.6: Functioning of a MOS n-channel transistor, without voltage between
G and S (left), and with voltage between G and S (left), as well as their switch
equivalent.

Current (ideally) only flows through the transistors when Vj, changes, making
them very energy efficient compared to current-controlled transistor. When the
transistor changes state, current flows which dissipates power (following the same
approximation P =V x [ as the diode). The power dissipated when changing state
is called dynamic power. Of course, there are still leakage currents, thus leakage
power, at a much smaller magnitude, consuming power as soon as the circuit is on.

When parts of the circuit is unused, one can save dynamic power consumption
by keeping the inputs constant. To save leakage power, that part of the chip must be
unpowered.

A disadvantage of the voltage controlled transistors is that due to capacitance
effects, the transistors are slow to change state. Stronger current can be used to
charge the capacity faster, which makes the transistor faster to change state, however
stronger currents means more heat. Smaller capacities also charge faster for the same
current intensity but it reduces how much current can pass from the Drain to the
Source. However, the capacity of a transistor uncharges into the previous transistor
in the circuit: making one transistor faster this way makes the next one slower.

CMOS Technology

Computers currently use a technology called CMOS (Complementary MOS) to
assemble the E-MOSFET transistors, in which p-channel transistors and an n-channel
transistors are used in pairs.

The simplest example is an inverter (Fig. 1.7). The output wire V, is connected
to both the Drains of the transistors. If Vj, is larger than the threshold, the transistors
connect the ground to the output wire. If Vj, is smaller than the threshold, the
transistors connect the power wire to the output wire.

The p-channel transistor circuit conditionally connects the output to the wire
with a strong voltage Vdd, enabling to output a voltage of Vdd V. The n-channel
transistor circuit conditionally connects the output to the ground, enabling to output
0 V. Those two circuits are dual of each other: if the p-channel transistor circuit has
two transistor in series, the n-channel transistor circuit will have them in parallel,
like for a NOR gate (Fig. 1.8).
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Figure 1.8: CMOS NOR gate.
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Construction of Transistors in a Semiconductor Plate

MOSFET transistors were a revolution not only because of the voltage control,
but also because their construction enables them to be etched into silicon plates
where they are packed very densely together. The nano-scale circuit is constructed
in multiple steps, using for each step blueprints called masks. First, p-doped and
n-doped silicon are placed on the substrate, then oxide, the metal gate, some routing
metal layers, and then substrate again to create multiple transistor layers on the chip.

UV laser
Mask l
Il h
Photoresist RN
Oxide |
Substrate

Figure 1.9: Some steps of photolithography for the oxide layer (not to scale).

This nano-scale etching of the circuit on the plate is made using a process called
photolithography (Fig.1.9). Taking as example the oxide layer, which constructs the
insulation between the gate and the semiconductor. The silicon plate is first oxidised
forming a layer of insulant SiO,. It is then covered in a material called photoresist.
A mask (Fig. 1.10) of the desired circuit is placed above the plate, and an UV laser
shining through will remove the photoresist where the plate is not covered by the
mask, by making it soluble in a developer solution. In the etching phase, a chemical
agent removes the oxide layer, except where it is protected by the photoresist. The
remainder of the photoresist is then cleaned off using the developer solution and the
laser.

Mask Lens Chip

=

Figure 1.10: Lens system enabling nano-scale etching with a larger mask.

UV laser

This technique enables the mask to be much larger that the resulting chip, as a
system of lenses can shrink the mask image.

1.1.3 Wires, Heat, and the Speed of Light

When creating a circuit, different transistors are assembled and linked together with
wires made of a conducting material, like aluminium. A wire is used to transfer
information, and has two states: on (high voltage) or off (low voltage). An ideal wire
can conduct current with no resistance effects.

A real wire, however, has a resistance that cannot be ignored. This resistance
results in a small loss of voltage proportional to the length of the wire. This effect
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heats the circuit, and voltage at the end of the wire can end up being below the semi-
conductor threshold of 0.7 V, preventing the information on from being transferred.
The heat is inevitable, but buffer transistors can be placed along the wire to amplify
the voltage. However, these transistors have an activation time, slowing down the
information transfer.

Another issue is that the on/off information cannot travel faster than the speed of
light 299 792 458 m s~!, or 30 cm every nanosecond.

Recent computers work at a maximum of 6 GHz (with overclocking), which
means that information has about 0.166 ns to perform a computation before the next
one comes in. Light can only travel 5 cm in a cycle, which is smaller than the size of
the computer?. It is impossible to move information from one side of the circuit to
the other in a single clock period, or cycle.

1.1.4 Fanout

In a circuit, the drain (output) of a transistor is connected to multiple different gates
(input) of following transistors. If the output is connected to /N gate, then this
transistor has a fanout of V.

A small current passes through the transistor when it switches, the transistor can
fail if there not enough current, as electrons need to move to change the state of the
semiconductor. Due to Kirchhoff’s current law, current is divided when the wire is
used to connect to different transistors in parallel. This means that the fanout cannot
be infinite. The maximum fanout of a transistor is called the drive.

If a circuit requires a large fanout, buffer transistors are used to amplify the signal,
as illustrated in the next section.

1.1.5 Clock

The transistor circuit is not built to be used for only one execution of a computation.
When the input data changes, the signal propagates through the circuit, and after a
certain amount of time the result can be retrieved at the output.

Falling edge Rising edge
Clock period

Value F

Time

Figure 1.11: Clock signal.

In a synchronous execution model, a ticking clock (Fig. 1.11) keeps the time
on the chip. The clock often comes from a quartz oscillator. Every clock period or
cycle, new data arrives, and transistors compute using a new value. At the end of the
clock cycle, the result is read at the output of the circuit.

2CPUs are typically about 1 cm per 1 cm, but a RAM stick is about 6 cm long. An external hard
drive is often bigger.
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Figure 1.12: Balanced clock tree. The dots are buffers.

The clock, by definition, has a very high fanout, as it connects all over the circuit.
To avoid parts of the circuit being desynchronised with others, the clock uses special
channels (Fig. 1.12) to get to every part of the chip. The goal is that any component
is connected to the clock by approximately the same length of wire, using the same
number of buffer transistors along its path. In the example, the leaf of the tree the
furthest from the clock (using the dotted path) is as connected the same way as the
one nearest from the clock (using the dashed path). Both path are the same length,
and are each composed of four buffer transistors.

The clock period is not available in its entirety for computations. Some of it is
reserved to absorb uncertainties in the physical implementation of the clock tree.

1.1.6 Moore’s Law and Miniaturisation

In 1965, the CEO of Intel, Gordon Moore predicted: The number of transistors
in an integrated circuit will double every year for the next 10 years. In 1975, this
observation was revised to doubling every two years, and became known as Moore’s
law.

This declaration has become a self-fulfilling prophecy, driven by economic
mandates demanding exponential growth.

Advances in physics and electrical engineering in the last 60 years have explained
the pace described by Moore’s law, as transistors are made smaller and smaller.
However, miniaturisation comes with problems: the smaller the transistor, the more
likely quantum effects, like the tunnel effect, are to occur. By tunnel effect, electrons
could jump through the depleted regions of a transistor, which would create a current
even when the semiconductor should be isolating.

In recent years, new advancements like 3D construction of transistors have tried
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to keep up with the pace. However, the physical limitations have curbed the growth
promised by Moore’s law, to the point of Hebsen Huang (NVIDIA’s CEO) declaring
in 2022: Moore’s Law is dead.

This makes it even more important to design efficient circuits, which is what this
thesis is about.

1.2 Circuits

To compute and operate on data, transistors are assembled in large circuits, that make
up the computer. Within these circuits, some parts are dedicated to storing data in
memory, while others serve as computational units. The computational units operate

based on boolean logic.
AND OR

1.2.1 Logic Gates

| || L

NOT NAND NOR XOR
(a) CMOS elementary gates. (b) Other basic logic gates.
Inputs || NOT | NAND NOR XOR | AND | OR
a| b || ma |=(aAb) | =(aVDd)|adb|aAb|aVb
0,0 1 0 1 0 0 0
01 1 1 0 1 0 1
110 0 1 0 1 0 1
11 0 0 0 0 | 1

(c) Truth table for common logic gates.

Figure 1.13: Basic logic gates and CMOS elementary gates, with their truth table.

Boolean logic is operated on using logic gates (Fig. 1.13). These gates are made
of an arrangement of transistors, and used to execute a basic operation on a signal.
Any low level computation can be derived from a combination of those gates. Truth
tables (Fig. 1.13c) are used to describe the behaviour of a logic gate. Common
symbols in boolean logic include — for negation, A for and, \ for or, T for true and
L for false.

As an example, the NAND gate (¢ NAND b = —(aAb)) is made with 4 transistors
(Fig. 1.14), two p-channel transistors in parallel, and two n-channel transistors
connected in series. A NOR gate (Fig. 1.8) is similarly built with 4 transistors.

In CMOS, the NOT, NAND, NOR, XOR gates are the elementary gates, and all
the other gates can be derived from them. An AND gate is made by assembling a
NAND gate and following that by an inverter.
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Figure 1.14: An AND gate built with CMOS transistors.

An abstraction that can capture all of the possible gates is the truth table. This
can be used to create reconfigurable circuits (see Sec. 1.2.6).

1.2.2 Assembling Gates into Operations

r

Figure 1.15: Multiplexer and how it is made in gates.

The multiplexer (Fig. 1.15) is a gate that can perform a select operation. If
the select signal s is 0, then a is chosen for the result r, otherwise b is chosen.
This higher complexity gate can be constructed using the previous low level gates :
r=((-s)ANa)V (sADb)
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The multiplexer is crucial to construct large operation as it enables to create a
branching, similar to software if-then-else statements. The inputs a end b of the
multiplexer come from two sub-circuits where the formula corresponding to the
then statement is evaluated and the other for the else statement. The select bit s, the
result of the if condition, chooses the correct result. The implementation of a branch
in hardware can be very expensive as both then and else are pre-computed, and it
cannot be optimised the same way software branching is.

1.2.3 Pipelining

For a circuit performing a computation, new data to be processed arrives every
cycle. To compute with this new data, transistors must change state, wires must
carry information, and this process takes time. When processing data, some parts of
the computation are done in parallel, and take more time than others. The longest
possible path from the input to the output is called the critical path.

Data 1 Step 1 Step 2 Step 3 Step 4
Data 2 Step 1 Step 2 Step 3 Step 4
Data 3 Step 1 Step 2 Step 3 Step 4

Execution time

Figure 1.16: Pipelined execution.

If the critical path is larger than the clock period, then the computation must be
divided into multiple steps (Fig. 1.16). When the first computational data is finished
with the first step, it enters the second step, and the first step is free to accept new
data. This is called pipelining, and enables large operations to have a throughput
(number of computation carried out) of one computation per cycle, even if the latency
(time taken for a computation) of each individual computation is more than a clock
period.

1.2.4 Registers and Memories

In order to set up pipelining, it is necessary to save the computation status at the
end of every step, to free it for the next computation. Therefore, there is a need
for temporary storage between pipeline stages. Registers (Fig. 1.17) are a type of
memory that enable to save data for a clock period. Data D is stored at the rising
edge of the clock, until the next rising edge, in other words for a full clock period.

Registers are a type of memory called volatile memory, as the information is lost
when the circuit is unpowered.

Registers can also be used to store data for more than one cycle, using an enable
signal e to signal to the register that it should accept the new value d.

Those registers can be used for addressable memories (Fig. 1.18). The address
A, made of w4 wires, is used to find which stored data D, made of wp wires, must
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Figure 1.17: Logic of register (left) and its symbol (right). Register with an enable
signal for storage (bottom).
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Figure 1.18: Reading an addressable memory, with w4 = 3 and wp = 4.
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be output. The figure shows an example of value with address 100, being chosen.
The total number of registers in this addressable memory is 2“4 X wp.

When writing in such memory, the input value is connected to all the stored
values. The address is decoded, and computes the enable signals e such that the
given address has e = 1, and the other ones have e = 0, effectively writing only in
the registers at the given address.

This type of memory is often used for working memory, for example in register

files.

1.2.5 Storage
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Figure 1.19: Structure of a floating-gate transistor used for non-volatile storage.

Non-volatile memory enables to store data without needing to power the circuit.
Flash memory, one of the most common storage for memory cards, USB drives, and
SSD disks, are made of a type of non-volatile memory. Data is stored in a special
type of transistor called floating-gate transistor (Fig. 1.19), where a second gate is
encased in the oxide, between the substrate and the gate. The floating gate can store
an electric charge without being powered as it is is isolated by the oxide.

Volatile memory is generally fast but expensive, and non-volatile memory is
cheap, but very slow. This is why most operational memory is fast, but cannot store
too much data, and large data storage is slow to access. Larger storage, regardless of
its type, also take space on the chip, and thus are further away from the computation
circuits, taking more time to be accessed. In addition, the larger the storage, the
more levels of multiplexers there are to read the data, slowing the access further.
Often, data from the storage memory is partially copied into varying degrees of
closer volatile memory, in order for it to be used faster for repeated access.

1.2.6 Implementation of circuits: VLSI and FPGA

Transistors are complicated components that can be constructed in many various
ways. Assembling them into logic gates and circuits requires a level of care and
electrical engineering knowledge that is not expected of hardware designers. When
constructing a circuit, a designer has access to a library of logic gates that were
constructed and optimised by hand. Various methods are offered to construct a circuit
using those optimised gates.
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Very-Large-Scale Integration (VLSI)

The VLSI technology for integrated circuits enables companies to design circuits
using a large amount of optimised basic gates, and have them manufactured in a
specialised factory. Those gates are called Standard Cells. The VLSI manufacturer
offers all the standard gates AND, OR, NOT, with 2, 3, even 4 inputs, but also more
complex ones like an optimised multiplexer cell with 4 inputs and 2 select.

Some gates offer sequential operations, like AND-OR-INVERT (AOI222) that
implements: —((A; A Ag) V (B1 A B) V (Cy A CY)).

Any of those complex standard cells could be be broken down into multiple
smaller standard cells depending on the situation. Large cells tend to be smaller in
area but slower than if the cell was broken down.

Vvdd
Standard =
height AND MUX % AOI222
Variable width l.

Figure 1.20: Row of standard cells.

Those cells each have a standard height, making them easy to assemble in a line.
The ground and the power wire are two parallel wires that are at a fixed position.
The routing of computing wires is made on dedicated routing layers, who are above
and below the semiconductor layers.

In VLSI, the area metric used to evaluate a circuit refers to the surface used to fit
the circuit, including the gaps between rows of standard cells, and the gaps between
standards cells of the same row.

Standard cells are generally not completely packed together, filling about 70%
of the row. The gaps of inactive semiconductor sitting between the etched standard
cells helps heat dissipation.

In some cases, some of those gaps can be used to place the circuit for a rarely
used computation. Since it is inactive most of the time, it will dissipate heat for the
nearby frequently used circuits. However, the computation will greatly save power
when it is used instead of using software techniques, with common computations
being a division, or trigonometric function approximations. This paradigm is called
dark silicon.

In this thesis, the VLSI target include the 16 nm and the 4 nm technology node
manufactured by Taiwan Semiconductor Manufacturing Company (TSMC).

Field-Programmable Gate Array (FPGA)

Another option is the FPGA (Fig. 1.21), where the basis of the circuit are repro-
grammable Look Up Tables (LUTs), the universal basic gate.
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switch matrix
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Figure 1.21: Simplified FPGA structure (Figure from [34]).

A Look Up Table has one output and multiple inputs, the current standard being
5 or 6 inputs. The LUTs are implemented with addressable memory, that is filled
with the truth table of the desired operation.

A logic gate can be expressed as a LUT using its truth table, and a LUT can be
expressed as a boolean formula as well, and simplified using distributivity laws and
other common formulas: Ya,aVa=aANa=a,aN—a=1,aV-a=T,aV_L=
a,aVT=T,aNL=1LaAT=a,...

Routing between the LUTs is made with wires which have reprogrammable
intersections, called the switch matrix. All the LUTs have a register just after their
output, as a register cannot be made using LUTs.

Modern FPGA s contain acceleration components to help with common opera-
tions that would use many LUTs: Block Random Access Memory (BRAM) to store
data, and Digital Signal Processing (DSP) blocks that implement a VLSI multiply
and add operation. Area for FPGA is counted in number of LUTs, BRAMs and
DSPs.

FPGAs are a lower cost alternative to making hardware, as one does not need to
prepare the whole manufacturing process of making masks and buying standard cell
libraries. If only a couple of those circuits need to be made, it is more cost effective
to buy a reprogrammable device. Testing is easier, and any bug with the circuit can
be corrected just by reprogramming the FPGA. However, re-programmability comes
at the cost of speed, as signals must pass through different switches when routing.
The maximal size of the device is also fixed, if the circuit does not fit on the target
FPGA, a larger one must be used.

This distinctive architecture comes with various trade-offs compared to VLSI.
First, since every LUT is followed by a register, pipelining is a free operation, as no
registers must be added or routed to. Then, due to the nature of the universal gate,
circuits based on tables are quite cheap compared to other computations. FPGAs
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have also been optimised to implement a fast addition operation, as it contains fast
carry systems (see Sec. 4.1) between LUTs that do not use the slow reconfigurable
routing system.

1.3 Computers

Computers can be implemented either with the VLSI or FPGA technology. The
architecture of a computer refers to the way its overall structure is constructed.

1.3.1 Von Neumann Architecture

Central Processing Unit (CPU)

Instruction
Control
: EProgram Counter
: Control :
D Memory
: signals
: Data
Data
Processing
Address

Figure 1.22: Von Neumann architectures for a computer.

Most computers follow the Von Neumann architecture (Fig. 1.22). They are
made of multiple components.

First, a memory is needed to store both the program and the data this program
operates on.

A control unit is in charge of reading and decoding the program. It keeps track
of the address of the program called the Program Counter (PC), and reads in the
memory the Instructions (I). Once the instruction is decoded, control signals are sent
to the data processing units.

Data processing units contain a little bit of working memory called the register
files, which are used when breaking down computations in multiple operations.
Register files are one type of closer working memory used to reduce the time spent
accessing the memory.

A Load and Store Unit (LSU) uses the control signals to load Data (D) into
registers from a specific Address (A), or store them into the memory. Caches are
often used to further reduce the memory access time, however it is a system that
is hidden to the Von Neumann computer. It works by copying storing some often
accessed data a bit closer to the processing units, keeping the first access slow but
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the subsequent access much faster. If a data was not accessed in a while?, the data is
copied into the far away memory to free the space for new data.

The computations are carried out in the Arithmetic and Logic Unit (ALU), using
data from the registers. Often, the ALU contains a specialised Floating-Point Unit
(FPU).

Other notable organisations include Graphic Processing Unit (GPU), that allow
computations to be carried out in a very parallel way, using the Single Instruction
Multiple Data (SIMD) principle.

1.3.2 Kalray MPPA

I-Cache 32KB-4W MMU D-Cache 32KB-8W
PF ID RR E1 E2 E3 E4 ES5
BCU Branch and Control Unit
256-bit ALU 0
ALU 1
64x 64-bit 256-bit 64x 256-bit PFB | ID | CRF | MAC MAY
Registers Registers ALU Multiply
Prefetch (e fCore Accumulate Unit
Buffer tion Register FPU

256-bit Decoder File

ALU Lsu
Execution Basic Linear Load/Store
Units Algebra Unit
—————»
Control Vs BILAU - integer

Vector
Reglilselﬂ BLAU - Floating point Unit

(<]
1Y
(=]
o
2
-l
>

TCA
Coprocessor

Figure 1.23: Kalray Processing Element (left) and its pipeline detailing the various
data processing units (right). Figures from Kalray documentation.

The circuits developed during this thesis are to be included in Kalray’s Massively
Parallel Processor Array (MPPA), using a VLSI technology. The MPPA’s base
Processing Element (PE) follows the Von Neumann architecture (Fig. 1.23). The
data processing is executed with two ALUs, a LSU, a Multiply Accumulate Unit
(MAU) containing also an FPU, and the coprocessor. The Coprocessor is also called
a Tightly Coupled Accelerator (TCA), and operates on dedicated register files.

All those units can function at once, and use the Very Long Instruction Word
(VLIW) architecture. This architecture puts much of the pressure of parallel execu-
tion on the compiler, when the program is converted into instructions. The compiler
translate higher level code into instructions that are bundled together if they use
different units, allowing parallel execution.

Algorithm 1 Example assembly code for the MPPA.

load in rl from address in r0 //an instruction

; // end of bundle

load in r3 from address in r4 //instruction using LSU
add rl and r2 in rl //instruction using ALU

; //end of bundle

3The definition of "a while" when talking about caches is an active field of research, and out of
scope for this thesis.
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Pseudocode (Algo. 1) for Kalray’s MPPA uses a line skip to separate the different
instructions of a single step, and a semicolon to indicate the end of the instruction
word.

i PE = VLIW Core +
oma Tensor Coprocessor
Dsu

Secure 4x25G
Boot | Ethernet | Ethernat

. - Cluster of 16 PEs

GPIO

CAN
SPI
ozl 16-lane PCle Gen4 Many-Core Processor

\

e
NN A O A

Multiple Processors per Card

Figure 1.24: Organisation of Kalray’s MPPA3 Coolidge Version 2. Figure from
Kalray documentation.

While this is already pretty parallel, the Massively Parallel part of the MPPA
(Fig. 1.24) comes from how those PEs are assembled. Sixteen PEs are grouped
together into a cluster, in which they share a local memory called the SMEM, that
functions as a cache. Then, each MPPA contains five of such clusters (so 80 PEs).
On top of that, acceleration cards can contain multiple MPPAs, with the pictured
card featuring a total of 320 PEs.

1.4 Tools Aiding the Design of Circuits

Multiple tools are used for the steps transforming a description of the architecture to
the blueprint of the transistor circuit.
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1.4.1 Synthesis place and route

Synthesis is process in which a circuit written with gates is transformed into a
hardware blueprint of standard cells (if VLSI is the target) or of LUTs (if FPGA is
the target) that has the same logic behaviours as the input circuit.

Once a blueprint of the circuit using the target basic bricks exists, place and route
will arrange those bricks in a way that makes it possible to link the cells with the
routing wires.

In FPGA:s, this means that the synthesis chooses what will be implemented in the
truth tables and how they should be linked, and place and route chooses which LUT
contains which table, and how to space them to not overwhelm the switch matrices
that enable routing.

In VLSI, synthesis chooses the standard cells and how they should be linked, and
place and route will pack them into rows of standard cells, placing them to facilitate
the routing step, and then using the routing layer to link the standard cells.

In this thesis, the synthesis tool used for VLSI is Synopsys Design Compiler NXT,
and the tool used for FPGA is Vivado.

The level of abstraction of the input code given to the synthesis tool is called
register-transfer level (RTL), in which basic gates are used and the pipelining is
explicit. Common RTL languages are VHDL and Verilog.

RTL languages are still pretty low level, describing binary logic. Some tools like
High-Level Synthesis (HLS) start from higher level C++ code, however this tends
to give less control on how exactly computations are organised and carried out, and
heavily rely on proprietary libraries.

Those processes respect the physical limitations of the set target: the period of
the cycle, the area dedicated to the circuit, the power it is able to dissipate (by spacing
standard cells or LUTs). However, sometimes the designer requests an impossible
configuration, and understanding the electronic circuit helps to understand why the
synthesis rejects it, and how to solve the issue.

1.4.2 FloPoCo

FloPoCo presents itself* as a generator of arithmetic cores (Floating-Point Cores,
but not only) for FPGAs (but not only).

FloPoCo is the software used in this thesis used to help write RTL code. It is
written in C++ and generates VHDL code.

Operator Generator

There are two levels of FloPoCo usages. The first is as a library for arithmetic
operators, that can be fully parametrised to the specific need of the user. In this case,
the user can go through the list of available operators, choose the parameters that are
needed for their application, both pertaining to the operator and the target FPGA and
frequency. The user can generate the fully pipelined operator, as well as a Test Bench
checking that it is functional, optimised for their specific target. Generating operators
can be done without looking at any of the FloPoCo code, only the documentation.

‘https://www.flopoco.oryg/
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FloPoCo offers various operators, Floating Point addition, multiplication and
division, Floating Point and Fixed Point function approximation with multiple
methods, and more. The DAG 0perat0r5 can be used to combine different FloPoCo
operators into a larger one by using a configuration file.

This however can be limiting, especially if small transformations need to be
applied on intermediate signals.

Custom Operators

When the need for this extra modularity arises, it becomes necessary to create a
custom FloPoCo operator. FloPoCo also implements lower level operators to help
with a custom operator, like Shifter, LZOC (Leading Zero and/or One Count), Sorting
Network and probably the most useful Bit Heap. The Bit Heap operator computes the
optimal way (either by Integer Linear Programming, or with heuristics if optimality
is not necessary) to add multiple integers by compressing the bits before performing
the final addition.

Between those existing operators, signals can be declared and operations can be
performed on signals using the VHDL syntax. When the signal is are declared, it is
necessary to define a few parameters : the name of the signal, if it is a wire or a bus,
how wide is the bus, and the delay of the signal. The delay describes the time needed
for this signal to be computed when all the operands are ready. This is needed for
the automatic pipelining.

FloPoCo supports multiple FPGA targets, which all have different delay parame-
ters. This is why most of the delay time is abstracted into various helper functions,
so that the operators are correctly pipelined even when technology changes.

This is how FloPoCo is used in this thesis.

FloPoCo for VLSI

In this thesis, FloPoCo is used for custom operators, and required to generate code
for VLSI. Multiple small modifications to the framework have been implemented
to add a VLSI target to change the way operators are pipelined, and by adding new
naming features (detailed in Sec. A).

Shttps://www.flopoco.org/DAGOperator/
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Chapter 2

General Purpose Number Formats

[...] we' share the same feeling that the big improvements brought to
numerical computing by the IEEE-754 and 854 standards for floating-
point arithmetic are endangered: we must explain to computer architects,
compiler designers and numerical application programmers that some
features of the standards that sometimes seem arcane or that seem to
hinder performance may be crucial when reliability and/or portability are

at stake.
— Jean-Michel Muller
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Data in computers is encoded using voltage levels in wires or memory cells.
These voltage levels correspond to the binary values of either O or 1, which form the
building blocks of information representation in digital systems.

However, when dealing with more complex or precise data, binary values alone
are insufficient. To expand the quantity of encoded information, binary digits (bits)
are grouped together to form a bit vector. A bit vector B, identified by its width w,
is an array of bits b; such that B = b,,_1 ... byb1by. The width of a bit vector is often
a power of two, the most common being 32 and 64, but sometimes as small as 4 or
as large as 256.

IReferencing Professor Kahan.

29
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The interpretation of a bit vector, the data it encodes, depends on agreed-upon
standards. The encoding of data significantly impacts the ways it can be processed
during computations. This chapter describes some of the most common ways of
interpreting a bit vector and the data it encodes : natural numbers, integers, fixed-
point numbers, and floating-point numbers. It focuses on the number formats, and
how to encode real numbers into those formats. The way to operate on those formats
is described in later chapters.

2.1 Natural Numbers

| | | | | | |
f I I I I I I

0 1 2 3 4 3 6

Figure 2.1: Natural number line.

A natural approach is the positional encoding, where the bit vector encodes a
number as written binary: the bit vector B of width w is interpreted as 26”71 2°b;.
Each bit b; has a position 7 and a weight 2¢. This enables to encode natural numbers
in N (Fig. 2.1).

| 1/000 1001 0]

(a) Representation of an 8 bit natural number.  (b) Representation of 146 = 27 + 24421,

Figure 2.2: Graphical representation of an 8 bit natural number (left) and an example
encoding 146 (right).

Sadly, while N is infinite, the computer is not, and the range of the numbers n
that can be encoded is limited by the width of the bit vector used, n € [0, 2% — 1],
(Fig. 2.2). In this example w = 8 enables all numbers between 0 and 2% — 1 = 255
to be encoded.

The bit on the far right is the Least Significant Bit (LSB), for natural numbers
it is in position 0. The bit on the far left is the Most Significant Bit (MSB), in this
example it is in position 7.

When encoding 146, the number is decomposed as a sum of powers of two:
146 = 128 4 16 + 2. The number is then encoded as bits in binary following this
decomposition: 146 = 27 4 2% + 2! = 10010010,, where the subscript 2 indicates
the number is in binary format.

2.2 Integers

There are various ways to encode negative numbers in binary, i.e. numbers in Z
(Fig. 2.3). The ones referenced in the rest of this work are sign-magnitude and two’s
complement.

In the sign-magnitude encoding for a bit vector size of w (Fig. 2.4), a bit
s = b,_1 is used to store the sign of the number, and the rest of the bits are used to
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Figure 2.3: Integer number line.

Sign bit
e |

(a) Encoding for an 8-bit integer number.

11/00 100 1 0] 11101110
(b) Sign-magnitude representation of —18 (¢) Two’s complement representa-
on 8 bits: encoded as (—1)% x (24 4 21). tion of —18 on 8 bits: encoded as
—27 420425423+ 22 4 21 = 18,
(1[0 000100 1 0] 11 1/1/1/0/1/1/10
(d) Sign-magnitude representation (e) Two’s complement represen-
of —18 on 10 bits: encoded as tation of —18 on 10 bits: encoded as
(=)' x (28 +21). —29+28 427420425493 4+ 92 4 21
= —18.

Figure 2.4: Graphical representation of an 8 bit natural number (a) and an example
encoding —18 in sign-magnitude (left) and two’s complement (right) on 8 and 10
bits.

store the absolute value: (—1)® x Z;”;(f b; x 2°. This method has two representations
for 0 (+0 and -0), and can encode numbers in [—(2¥~1 —1),... 2~ —1]. The
same number in a larger representation has a sign bit moved over to the new MSB,
and the gaps are filled with zeros.

In the two’s complement encoding, numbers are considered cyclic as if on
Z/2"Z. This method has one representation for 0 and can encode numbers in
[—2v=1, ..., 2271 —1]. A positive number z € [0,...,2*~1 — 1] is encoded like a
natural number. A negative number z € [—2%~! ... —1] is interpreted such that
z=-2v"14 z;?":_oQ b; x 2¢. The same number in a larger representation is extended
from the most significant bits with copies of the sign bit. This is called sign-extension
during conversions to a larger format.

In most programming languages, integer formats are: char (w = 8), short
(w = 16), int (w = 32) and long (w = 64). When dealing with natural numbers,
programming languages use the unsigned keyword in front of the format, for
example unsigned int for a natural number where w = 32.

2.3 Fixed-point Numbers

When more precise fractional numbers are needed, a scaling factor can be added to
our integer. The encoding is similar to integers, but the number X is scaled by a fixed
power of two, represented as X x 28 where the Least Significant Bit (LSB) is a
parameter of the format. The format is denoted as uFix(MSB, LSB) if it is unsigned,
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-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 2.5: Fixed-point format sFix(5, —2) number line.

sFix(MSB, LSB) if it is signed.

100101001 0]

‘ o
\ 4

(a) Representation of a fixed-point format (b) Representation of 20.5 on a fixed-
uFix (5, —2). point format uFix(5, —2).

Figure 2.6: Graphical representation of an 8 bit fixed-point number (left) and an
example encoding 20.5 (right).

Integers are also a special case of fixed-point format, the examples in the previous
sections would be the format uFix(7,0) and sFix(7,0).

001010010 100101001 0]
(a) Representation of 5248 on a fixed- (b) Representation of 0.080078125 on a
point format uFix (13, 6). fixed-point format uFix(—3, —10).

Figure 2.7: Various example of graphical representation of fixed-point numbers
where the point is not represented.

Lets take for example the fixed-point format uFix(5, —2) (Fig. 2.5). This format
can encode numbers that are an integer multiple of 22 (Fig. 2.5). When representing
fixed-point formats, it is usual to add the point (Fig. 2.6a) to show where the position
0 is. This is useful in the case where the position of the bits are not shown (Fig. 2.7).
The fixed-point format can also be used to encode very big (Fig. 2.7a) or very small
numbers (Fig. 2.7b), in which case the point is not always represented.

Most programming languages do not have a native type for fixed-point numbers.
Often, dedicated libraries are used, in which the integer and fractional part of the
fixed-point number are encoded separately as two integers.

2.4 Floating-point Numbers

While fixed-point numbers allow a fixed scaling for a given format, a dynamic
scaling gives more flexibility to the number format (Fig 2.8). This will enable the
approximation of real numbers in R.

This encoding is similar to the scientific representation (Fig. 2.9). It follows the
structure: Sign x Significand x Base®P°"n_ While base 10 can exist in computers
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Negative half Negative half
of binade e = 1 of binade e = 1

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 2.8: Floating-point F(4, 3) number line.

Sign Exponent

! |
h=+6.63 x 10734 Js

Figure 2.9: Scientific notation of the Planck constant.

for banking software, base 2 is the most commonly used in digital systems. This
encoding has been standardised in 1985 [66] as the IEEE 754 Standard.

WE Wk

s| [ [ [F |
Figure 2.10: Representation of floating-point [F(4, 3).

A floating-point format (Fig. 2.10) is made of three fields S, F, F. F(wg, wr)
denotes the set of floating-point numbers parametrised by the width wg of the
exponent F, and the width wp of the fraction F. F(wg, wr) is also used, by abuse
of notation, to describe the floating-point format. All the examples in this section
use the format F(4, 3) to illustrate.

For unity of representation, the significand is constrained to have exactly one
non-zero digit in its integer part. This ensures that the exponent describes the order
of magnitude of the number. The significand always start with 1, so this bit can
be omitted, and only the bits after the point, the fraction F' € uFix(—1, —wp), are
encoded. The significand is reconstructed as 1./" = 1 + F'. The size of the fraction
field determines the precision of the format.

The exponent is an integer, and should be able to have both positive and negative
value, as to encode both very large and very small numbers. The choice taken by the
standard is not to use a two’s complement or sign magnitude for the exponent, but a
bias approached. F, the biased exponent, is an unsigned integer which represents
the signed number ¢ = F — b, b = 2¥5~1 — 1, the unbiased exponent. This choice
enables two floating-point numbers to be compared like two sign-magnitude integers.
The size of the exponent field determines the range of the format.

The sign, as with sign-magnitude methods, is encoded with a unique bit. An
encoding (S, E, F') € F(wg, wr) represents the rational:

r= (-1 %25 x (1+F) . 2.1)
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The numbers who have the same exponent are called a binade.

2.4.1 Special Values

Some encoding space in the floating-point format is reserved for special values.

Infinity is encoded with the fraction equal to 0 and the exponent equal to 27 — 1,
the maximum exponent. Both 400 and —oo are encoded depending on the sign.

Not a Number (or NaN) encode an error. Any number with an exponent equal to
E = 2"F — 1, a non-zero fraction and any sign encodes an NaN. Historically, the
large number of NaN values (2“7 1 — 2) were reserved to be able to encode error
messages into the numbers. In practice’, only two NaN classes are really used, either
a signalling NaN, or a quiet NaN. If the most significant bit (MSB) of the fraction is
1, then the NaN is quiet, otherwise it is signalling.

The whole binade with the maximum exponent 2% —1 is occupied by infinity and
NaN encoding. The maximum representable number has an exponent of £/ = 2%# —2,
which encodes e, = 2°#~! — 1. The value of the maximum positive representable
number is 22772 x (1 + £1=1) (Fig. 2.12a).

2WF

Zero is a special value that cannot be obtained with Eq. 2.1. It is encoded with the
exponent and fraction equal to 0. There are two encodings of 0, noted +0 and —0.

127272 5 (1 4-0)

(a) Zero exponent encodes zero.

42727 (1 4 27vr)
°
|

(b) Use 0 binade like normal numbers (except for 0 encoding).

_{_272“'E71+2 X (0 + 2*’LUF)
9
|
I

(¢) Have subnormals.

Figure 2.11: Various ways to use the encoding for £ = 0.

2Except in Javascript, where the large number of NaN is used to encode integers.
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Subnormals: The binade of numbers whose exponent is 0 is already limited in
size as two encoding are already used to encode +-0. There are multiple options in
how to use the rest of the binade.

The first option is to use the whole binade with 0 exponent as extra encoding for
0 (Fig. 2.11a). This is generally considered a waste of encoding, but is sometime
chosen as a cheap solution.

The encoding can also be used following the normal formula (Fig. 2.11b). This
is not a common option, as it makes the binade incomplete, and a large gap still
remains around 0.

The last option is the use of subnormals (Fig. 2.11c). Subnormals are a special
type of floating-point numbers that are not normalised, that is whose significand does
not start by 1 (Eq. 2.2).

(—1)% x 27" x (0 + F) when E = 0. (2.2)

With subnormals, there is the same interval between two floating-point num-
bers in the binade with exponent O and exponent 1, allowing a regularly spaced

graduation of numbers in |— x 272"F 742 4 x 2-2“E7'+2| Thjs is called gradual

underflow. The smallest normal number has an exponent that is encoded with &/ = 1,
representing €umin norma = —2%F 1 + 2.

The largest advantage of this choice is its impact on properties verified by
floating-point numbers. The most important one for computer scientists [52] is
x—y # 0 < x # y, for z, y floating-point numbers. For mathematicians, this would
be the Sterbenz Lemma [96]: if % < z < 2y, then x — y is also a floating-point
number, thus the subtraction is computed exactly.

The smallest representable subnormal number (Fig. 2.12b) is: +2~
The weight of this number is e, = —2¥7~1 +2 — wp.

WE—l 4o wp

of1/1 1 0[1 1 1]

o[1/1]1/1]

(a) Largest positive floating-point number in F(4, 3): 120.

10]0 0 0 0[]0 0 1]

0 .

(b) Smallest positive floating-point number in F(4, 3): 0.001953125.

Figure 2.12: Representation of the smallest and largest representable number in
[F(4, 3) and their expansion in the fixed-point encoding sFix(8, —9).

2.4.2 Expansion to a Fixed-point Encoding

A floating-point format has a finite maximum and minimum exponent. There exists a
fixed-point format (very large), in which we can encode all the numbers in F(wg, wr)
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(—1)° x 210°7 % (1 +0.010,) = +23 x 1.25 = 10

10/1. 01 0]/0 1 0]

(6000 [TT6TET0]

Figure 2.13: Representation of 10 on a floating-point F(4, 3) and its expansion in
the fixed-point encoding sFix (8, —9).

(Fig. 2.13).
This format is SFix(emax + 1, €min ), With €0 = 29271 — 1 and ey, = —29E~1 4
2 — WE.

2.4.3 Common Floating-point Formats

The original IEEE 754 standard from 1985 [66] only described two binary floating-
point formats, on 32 and 64 bits. A revision in 2008 [67] added three formats, on 16,
128 and 256 bits.

* binaryl6, FP16 or half in most programming languages, is the smallest
floating-point format described by the standard, with wgy = 5,wp = 10.
It is often used for graphical computing or other computationally intensive
applications that do not require much precision and range.

 binary32, or FP32, with wgp = 8, wp = 23, the most versatile and general
format. It is called f1oat in most programming languages.

* binary64, FP64 or double, is a floating-point format commonly used for
scientific computing, with wgy = 11, wp = 52. In most computers it is the
largest format supported in hardware.

* binaryl28 or quad: wg = 15, wrp = 112, is arguably larger and more precise
than what anyone would ever need. The fraction of binary128 (2113 ~ 103%)
is large enough to express the diameter of the observable universe (~ 8.8 X
10%m) with the precision of about the size of a virus (10~ "m). To this, add an
exponent in [107496% 101931],

* binary256 or octuple: wg = 19, wrp = 236. In case someone wants bigger.

2.5 Computing Uses

When using a computer, most people are not designing code for any of the afore-
mentioned formats, but with real numbers in mind.

First, real numbers must be converted into these formats. Then, those numbers
are used in computations and further transformed.
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2.5.1 Rounding

possible output values real values to round

Y

»
P

Figure 2.14: Representable number line and real values.

If the real number = € R is in the range of the format, then it is either exactly
a number the format can represent, or is somewhere between two representable
numbers (Fig. 2.14). The rounding operation is often denoted as o(-), and X = o(x)
is the rounded value of .

Round to Nearest
I e .

Consecutive machines numbers

Round Up

/\Q #

Round Down

T

Figure 2.15: Various rounding options for a real number.

There are multiple rounding modes defined in the IEEE 754 standard. The main
ones are Round to Nearest (RN), Round Up (RU), Round Down (RD) and Round
to Zero (RZ) (Fig. 2.15). In Round Up mode, the number is rounded to X, the
smallest floating-point larger than x. In Round Down mode, the number is rounded
to X7, the largest floating-point number smaller than . Round to Zero is equivalent
to Round Up when z is negative, and to Round Down when it is positive. x verifies
xr € [ X1, X 7], with X*, X~ two consecutive representable numbers.

Round to Nearest rounds to the nearest floating-point number. In some cases, x
is exactly between two floating-point numbers. This situation is called a tie, and the
number a mid-point. The standard defines two different ways to break the tie. The
first one, Round to Nearest Even (RNE), rounds z to the number (X or X ~) whose
encoding finishes with a 0. It is the most commonly used for binary floating-point.
The other tie-breaking rule is Round to Nearest ties Away from zero (RNA). This
rounding is used for decimal floating-point numbers, following the common tie rule
where z is rounded to the number of larger magnitude, that is o(1.5) = 2.
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A useful rounding mode that is not in the standard is Round to Odd (RO)
introduced [5] to avoid issues when numbers are rounded twice into formats with
progressively less precision. In Round to Odd, z is rounded to the number X or
X~ which encoding finishes with a 1, except if it is exactly representable as an even
representation (in which case X = Xt = X~ is even).

Faithful Rounding

Sometimes, rounding is relaxed, allowing for either X or X~ be used as rounding
option for x. This is called Faithful rounding (Fig. 2.16). In this context, Round to
Nearest is sometimes also called Correct Rounding.

possible output values real values to round
one ulp r/ \
<>
l l l ] l l l l .
1 1 1 1 ] | >
faithful correct

Figure 2.16: Illustration of Round to Nearest and Faithful rounding.

Ulp

An ulp (Unit in the Last Place) can be defined as the distance between two consecutive
representable numbers (Fig 2.16). In the case of natural numbers or integers, the ulp
is equal to one. In the case of fixed-point numbers, the ulp is 258,

In the case of floating-point numbers, the ulp is used in relation to a specific
number, as the ulp is different depending on the exponent. The ulp of a floating-point
number is ulp(X) = 2¥7°~wrF_ The definition of an ulp of a real number, when
rounding to a floating-point number, has subtleties when nearing an exponent change.
This is discussed in details in [95], with multiple definition options.

In this work, ulp is only used for fixed-point numbers, for which it is well-
defined. The ulp function is useful for error evaluation when certifying some round-
ing properties. For correct rounding, | o (2) — x| < Julp(z). For faithful rounding,
| o () — x| < ulp(z).

2.5.2 Computational Hazards

When executing any operation ¢ € {4+, —, X, =+, ...} on floating-point numbers
z,y € F(wg,wr), the IEEE operation is defined as IEEE, = o(x ¢ y). The result
must be as if the operation was computed exactly like a real and then rounded.

If the intermediate result = ¢ y ¢ F(wg, wr), then there is a loss of precision
during the rounding, which results in the Inexact flag being raised.

When a division by 0 is detected, the IEEE 754 Division by 0 flag is raised, and
the computation results in either +00, —oo or NaN (in the case of g).

Some flags are raised because the number is out of the range of the format. If
the result is too big to fit in the format, this is called an Overflow of the format,
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which raises the corresponding IEEE 754 flag. An Underflow is when the number
is too small to fit in the format. The IEEE 754 flag is raised when a number looses
precision to the range of the format. A number that can be exactly represented as a
subnormal does not raise any flags. If a number is rounded to a subnormal with loss
of precision, then the inexact and the underflow flags are raised.

The last IEEE 754 flag is the Invalid flag. 1t is raised when an invalid operation is
executed: 3, +00 — 00,00 x 0,1/=2,... In most of those cases, a NaN is returned.

Any operation whose inputs contain a signalling NaN will raise the invalid flag.
It will also return a quiet NaN, except in the Max or Min functions who have special

functioning (as NaN is neither bigger nor smaller than any other number).
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Machine Learning (ML) first gained popularity for computer vision, using Convo-
lutional Neural Networks (CNN). The main applications of the automatic analysing
of pictures or video are self-driving cars, video surveillance, waste sorting, and
medical imagery. The new revolution in the ML world are Large Language Models
(LLM), whose use is now widespread for many applications: translation, chatbots,
code generation, ...

We trust that ML researchers know what they are doing, and aim to provide them
the tools to power their models.

3.1 How are Large Language Models Powered ?

The effectiveness of Large Language Models (LLMs) has increased significantly in
recent years. The primary driver of the technological advancement of LLMs was
brought by Transformers [121]. A transformer is a specific type of ML model that is
able to generate text and make links between subjects. Its structure is described in
Fig. 3.1.

41
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Figure 3.1: Architecture of a transformer network (Figure from [121]).
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Figure 3.2: Architecture of an attention layer (Figure from [121]).

A large part of machine learning revolves around efficiently moving data between
storage and arithmetic units. The computational core of the transformer network is
made of multiple attention layers (Fig. 3.2). Three steps in attention mechanism are
arithmetic operations: matrix multiplication (described in section 3.1.2), the softmax
normalisation layer, and the linear layer that is composed of a ReLU (Rectified
Linear Unit) activation function and a linear scaling (described in section 3.1.1).

There are two different phases in the life of a machine learning model, training
and inference. First is the training. During this phase the model is used for a specific
task, and the quality of the given result compared to the expected result enables to
tune its parameters. Once the results are satisfactory, the model can be used for its
task, for the phase called inference.

This thesis focuses more on inference.

Memory/register subsystem

Z+Y5 Xix Y

|
[ Adapt quantisation domains (scale)

l

Compute activation function

|

Compress FP32 to storage format

}

Memory/register subsystem

—

Figure 3.3: Architecture of steps for ML.

Without loss of generality, the different steps in network inference are described
in Figure 3.3.
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3.1.1 Functions

The softmax function operates on a vector of real numbers 7 = (z;)o<i<, € R™ and
outputs a vector o(Z) = 7 such that:

Ty

(&
Vi = oot
(3 2;1201 el’j
In order to avoid overflows when implementing this function, it is often rewritten as

x —Iy
e max 7

NS
where Ty = |7] .

The softmax function is heavily used in transformers, and thus requires a strong
hardware support in the ML accelerator.

The reciprocal square root function is also used to accelerate training with the
batch normalisation technique, common in Convolutional Neural Networks [70]. 1t
can also be used for transformers [126]. Different steps of output vectors are grouped
together in a batch of size m, often smaller than n. Batch normalisation operates
on the same vector coordinate for different steps, while the softmax function that
operates on the coordinates of one step only (Fig. 3.4).

Batch size m

Batch Norm | ) Al U
+ Vector size n
0 m—2 m—1
Lp—1 L1 |Tn—1
Softmax

Figure 3.4: Batch normalisation inputs compared to softmax.

It useful to have a hardware support of the inverse square root \/ii for acceleration
purposes.

RMSNorm(¥); = ﬁé(ﬂ) where RMS(Z) =
T

3.1.2 Matrix Multiplication

The most computational intensive part of the activation mechanism is the matrix
multiplication. This operation needs a huge amount of input data, and also generates
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a lot of it. The "Memory Wall", term coined by Wulf and McKee [124], describe
how the processing speed increases much faster than the memory speed.

Because of this, the way data is sent between the memory and the computing unit
shapes the way the computation is conducted. The bus between the memory and the
computation units is very expensive, and making it larger is often not a viable option.
The goal is to do as much computation as possible on the data that was brought back.

Figure 3.5: Representation of a rectangular matrix multiplication and add: Z =
Z+XxY.

Matrix multiplication (Fig. 3.5) is good to optimise this, as the quantity of input
data is in n? and the quantity of computations in n3, where n is the size of the matrix.
The matrix multiplication is a very large operation, and is often broken down into
smaller unit.

One way is to break it down in outer products U ® V' = Z. The inputs of
the operator are two vectors U, V' € V), and the output is Z € M, ), such that
Z.j) = U; x V;. However, this creates a lot of output data, that could be difficult to
move out of the computation unit. A solution to mitigate this is to keep the output
data in place, add multiple outer products inside it, and only retrieve the result once
the computation is finished. This choice is present in Arm’s Scalar Matrix Expansion
(SME) [2] and IBM POWER 10 matrix-multiply assist (MMA) facility [11].

Another popular choice is the systolic array [82]. It enables multiple computation
units (CU) to share data (Fig. 3.7). Instead of keeping data in a centralised place,
where each CU can directly load it from memory, only one CU loads parts of the
data, and shares it with the next CU that will need it.

For example, value Y| ; is delayed in cycle 1, used to compute Z ; in cycle 2,
Zy1in cycle 3 and Z5 ; in cycle 4.
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Figure 3.6: Matrix multiplication broken down into multiple outer products. At
every stept =i, Ziy1 = Z; + U; @ V.
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Figure 3.7: A computation unit (top) and its use in a systolic array (bottom) to
compute a matrix multiplication.
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3.2 Kalray’s Scheme

The matrix multiply operation in the Kalray MPPA3 CV2 uses a similar idea as the
systolic array.

3.2.1 PE-to-PE

PEO PE1

PE3 PE2

Figure 3.8: Send-receive channels between PEs. The colours are coherent with the
PE’s number.

The protocol used to organise matrix multiplication is called PE-to-PE [41]. It
enables 4 Processing Elements (PE) comprised of a Core and a Tightly Coupled
Accelerator (TCA), to load independently part of a large matrix, and share data
through dedicated channels (Fig. 3.8).

M (,m) (F) refers to the set of matrices of n rows and m columns, filled with
numbers, often floating-point of format [F.

Each PE (Fig. 3.9) has a hardware matrix-multiplication operator that can do the
following operation: X xY +Z, where X € M5 (FP16),Y € M4 (FP16), Z €
M 4,4)(FP32). This operator is pipelined in 4 cycles, and contains a bypass such
that the output Z can loop into the input without needing to use register space.

The accelerator contains an independent register bank containing 64 registers of
256 bits.

Every cycle, PEO can load 256 bits of data from memory, and send/receive 256
bits from another PE (either PE1 or PE3). In the matrix-multiply computation, X, Y
are both 512 bits inputs, which means that X, o (Fig. 3.9) is loaded in two halves of
256 bits: X ., X0,0;- This scheme is software pipelined (Algo. 2).

The global PE-to-PE scheme (Fig. 3.10) works with 4 PEs working together
to compute: Z = X x Y + Z, where X € M 432)(FP16), that is a matrix with
16 rows and 32 columns, filled with FP16 numbers, Y € M s2,16)(FP16), Z €
M 16,16)(FP32). Each PE loads a fourth of X and Y, while Z is kept in each PE’s
TCA register. It then receives from two other PE a missing data, enabling each PE to
compute a fourth of the result.
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Yoo You
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X121nX1,2,

Figure 3.9: Computations executed by PEO, using data loaded by PEO, and shared
from PE1 and PE3.
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Algorithm 2 Pipelined code of matrix-multiplication for PEO. In black, the first set
of matrix multiplication and the loading of the values. In blue, the second set, and in
red the third one.

load XO,(),[
; //end of bundle

load Ypo; //from SMEM 256b

send Xpo; to PELl //256b

receive X;o; from PEl //256b

’

load X070’h

send Ypo; to PE3
receive Yy;; from PE3

4

load Ypon

send XO,O,h to PE1
receive X;g, from PEl
7

load XO,l,l

send Ypop to PE3
receive Yy, from PE3
compute Xgg X Yy + Zoo

14

load Yy

send Xpi1; to PEL
receive X;;; from PEl
compute Xpo X Yp1+ Zo1
7

load Xoip

send Yjo; to PE3
receive Yi;; from PE3
compute Xjo X Yp0+ Z1p
7

load Yign

send Xo1, to PEL
receive X;;;, from PEl
compute Xi; X Y11+ Z1;
7

load Xoa2,

send Yip, to PE3
receive Yj,, from PE3
compute Xg1 X Y10+ Zoo

4
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Y
PEO PE3 PE1 PE2
X U J

PEO

PEO PE1
PE1

X Z

PE2

PE3 PE2
PE3

Figure 3.10: PE-to-PE scheme in the MPPA3 CV2, showing how the load of the
input matrices X, Y, Z are broken down into the 4 PEs. The matrix multiplication is
done in small chunks by the PE that loaded that chunk of Z.
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3.2.2 Matrix Accelerators

For the new generation of Kalray processors MPPA4, an alternative route was
taken. Instead of distributing the computation in the PE, the matrix-multiply unit is
separated in a dedicated accelerator, nicknamed the Loosely Coupled Accelerator
(LCA). This dedicated accelerator is better suited to keeping the matrix Z in the
operator, which leads to various design choices. The LCA is controlled and fed data
by four PE, similarly to the PE-to-PE protocol, and it can compute: Z = X X Y + Z,
where X € M(32716) (FP16), Y € M(16732) (FP16), Z € M(32732) (FP32)

Yo YV Y Y
X X
X Zy Z X 7z  Z
t=0
t=7

Figure 3.11: Representation of the execution in 8 step, pipelined operation.

This operation is separated into 8 pipelined operations (Fig. 3.11), where the
hardware computation is: Z = X x Y + Z, where X € M s3,16)(FP16),Y €
M 16,4)(FP16), Z € M 32.4)(FP32). The LCA can compute 4096 FLOPs (Floating-
Point OPerations) per cycle, while in the PE-to-PE scheme the 4 PE can only
compute 1024.

The organisation of the accelerator plays a great role in its efficiency, and guides
the operator design. However, it should also be chosen with the arithmetic in mind,
as it has an impact on the computation. For example, an outer product will be more
sensitive to cancellation issues than a dot product. In this thesis, the organisation is
considered a fixed constraint, and the arithmetic component is designed around it.

3.3 Specific Number Formats for Machine Learning

In an effort to increase the amount of data transported from the memory to the
matrix-multiply accelerator, is possible to reduce the precision of the numbers. This
enables more numbers to be transported in a bus that has the same width in bits.

Those advancements were made possible by the introduction of quantisation,
where a neural network trained with a precise format can have its parameters com-
pressed for inference.
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Earlier neural networks used IEEE floats (FP32) for both training and inference.
A truncated FP32 was then used, BF16 [69], with the same range as an FP32, but
a third of the precision. Half-floats (FP16) are another option that was considered.
Then a truncated FP16, called ESM2, or another 8 bit format called E4AM3 (with 4
bits of exponent, 3 bits of fraction) were introduced [112], further reducing the size
of floating-point numbers used for inference.

Other more exotic formats can be used, for example Posits [54, 10, 87, 98] (more
information in section 3.3.2), or the Logarithmic Number System [77, 74, 13].

Fixed-point formats were considered, but were not that effective compared to
floating-point formats of the same size. The benefits of FP8 compared to INT8
quantisation are explained by the non-linear sampling of FP8 values [91], which is a
better match for Gaussian-like distributions that have more density around zero [83].
In the setting of inference with Post-Training Quantisation (PTQ), [83] found that
many computer vision networks benefit from FP8 formats.

Large Language Models are very sensitive to range, requiring scaling steps to
achieve satisfactory training [48]. In the current LLM giants, Deepseek [86] was
trained using mixed-precision that included FP8, BF16 and FP32, resulting in one of
the less expensive LLM training yet.

3.3.1 FP8 - The Struggle for Standardisation

E5M2: The ESM2 format is originally created as a truncated half-float, and is
successfully used in Deep Neural Networks for computer vision in [123]. It follows
specifications of the IEEE-754 standard [66] without being an official format from
the standard.

E4M3: The E4M3 format is a custom format introduced in [112]. E4M3 was first
adopted by NVIDIA, ARM and Intel, huge industrial actors, in [91], then by Meta,
Google and AMD with the Open Compute Project specification [103].

The E4M3 format follows the philosophy that for small formats, every repre-
sented number counts. The IEEE-754 standard contains different encodings for the
same (or nearly the same) information. While everyone agrees that some encodings
can be used to represent numbers, there are more issues determining which encodings
to remove.

If E4AM3 followed the IEEE-754 specifications, it would:

e Contain 2 infinities : +00 = 0.1111.000 and —oco = 1.1111.000.
e Contain 2 zeros : +0 = 0.0000.000 and —0 = 1.0000.000

e Contain 14 NaN : 8 quiet (z.1111.12x) and 6 signalling (z.1111.0zx that are
not oo).

In the spirit of not wasting encoding space, all the standards agree that it is
necessary to use subnormals and not flush them to zero.

The original E4M3 [123] removed the encoding of infinity, and kept only 2 NaN
values, encoded as s.1111.111. The two zeros are kept in the standard. All the
values encoded as s.1111.xzx that are not NaN are used to represent numbers with
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an unbiased exponent of 8 (where 7 used to be the maximum). Any overflow in
computations would return a NaN. This is also the standard agreed on by [103].

A later version [99] by Graphcore proposed to remove the —0 and use the space
to encode an unique NaN. This way, all the values encoded as s.1111.xxz are used
to represent numbers. Like the previous version, an overflow in computations would
return a NaN.

While this could be considered counter-intuitive, it is not a problem to use NaNs
in case of infinities. The results are only checked at the end of the network, and an
infinity in a matrix multiplication has high chances of generating a NaN, either with
addition co — oo or multiplication oo x 0. Just knowing that an error was made is
enough for neural network applications.

Bias value Since FP8 formats have little range, some propositions [83] introduced
a format with variable bias value. This allows the bias to be adapted per-channel
(weights) or per-tensor (activations), as well a be fixed for a whole network.

This idea is further developed in the OCP Microscaling standard [104], and
applied to even smaller formats, like FP6 (E2M3 or E3M2), FP4 (E2M1) or INT4.

IEEE’s attempt to standardise: The IEEE working group P3109 is, at the time
of writing this thesis, working on a standardisation of the 8 bit floating-point. This
would result in a new standard, and not an addendum to IEEE-754. An interim report
published in September 2023 [53] gives more information on what this standard
could look like.

The first surprising part is that all sizes of exponent and fraction size have been
described, from E7TMO to E1M6, and where E1M6 is integer in sign-magnitude
representation.

Another is the change to the ESM2 format, that had been until then kept as a
truncated FP16. In the IEEE report, the infinity and NaN binade would also be
used for numbers, and the bias of the format would be changed from 15 to 16. The
reason for this bias change is to have more symmetry in the format, with the smallest
exponent being —15, and the largest 15 instead of —14 and 16 respectively. However,
this makes some FP16 numbers overflow the ESM2 format, and the conversion
between FP16 and ESM?2 becomes more expensive.

The working group offers two versions for each format. Using E4M3 as an
example: The first version contains infinities, encoded as s.1111.111, and a NaN is
encoded where —0 would be 1.0000.000. The second one does not contain infinities,
and encodes everything like the Graphcore format. However, in the case of overflow,
this format will saturate the number to the largest number for the format s.1111.111,
instead of a NaN.

Kalray’s choice: In order to be compatible with existing hardware and software
implementations, Kalray decided to support the OCP FPS8 in its accelerator. However,
during the early stages of this thesis, the company had a preference for the Graphcore
format because it could encode more numbers.
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3.3.2 A More Exotic Format: the Posit

2 |- B 2 |- B

1.8 — — 1.8 — —

1.6 — — 1.6 — —

1.4 | . 1.4 | .
1.2 | . 1.2 |- .
1 . 1 .
0.8 ! ! ! ! ! ! ! 0.8 ! ! ! \ ! ! !
108 1076 10=* 1072 10° 102 10* 105 10® 1078 1076 107%* 1072 10° 102 10* 10 108
—— Float ESM2 ——Posit8.2
—— Float E4AM3 —— Posit8.1
—— INTS8 —— Posit8.0

Figure 3.12: Precision of Posit8 (es € {0, 1,2}), FP8 (E4M3, ESM2) and INT8
formats. It is computed as the absolute difference between two successive values
divided by the one of the largest magnitude.

Posit Formats The posit representation [55, 54] encodes a floating-point number
x with asign S € {0, 1}, a regime value R, an exponent value £ € [0,2° — 1] and
a fraction value F € [0, 1) as:

0 if S = 0 and all other bits are 0

NaR if S = 1 and all other bits are 0

((1 o 35) + F) % 2(172S)><(263><R+E+S)
otherwise

The regime value R is encoded in a bit-field of £ > 0 identical bits and a bit
whose value differs from the previous one (i. e. with an unary representation). If the
first regime bit is zero then R = —k else R = k — 1. There is only one exception
value called NaR (Not a Real). Given that the minimum number of regime bits is
two, while the exponent field takes es bits before any fraction bits are encoded, the
maximum number of fraction bits for the Posit8.es representations is 5 — es.

The posit encoding is easier to understand by first considering case S = 0. For
the bit patterns different from O and from NaR, then z = useed™ x 2F x (1+F),
where useed = 2%, so the exponent is actually 2°° x R + E. In case S = 1, one
may take the two’s complement of the posit bit pattern, decode it as in case S = 0,
then negate the resulting value. This procedure is typically implemented in hardware
to produce the internal floating-point representation of a posit number [10].

Suitability of Posits for Deep Learning The standard Posit8 representation [54]
(with es = 2) appears especially interesting [87], as it combines a dynamic range
larger than the ESM3 representation with a precision comparable to the E4AM3 rep-
resentation around zero (Fig. 3.12). Previous work also confirmed that Posit8.2
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performs significantly better than ESM?2, Posit8.0 and Posit8.1 on detection and
classification networks, while Posit8.3 performed similarly to Posit8.2 [30]. How-
ever, Posit8.0 and Posit8.1 arithmetic is less expensive to implement than Posit8.2
arithmetic, so these formats are also included in the scope of our exploration.

For the applications of posit arithmetic to deep learning, the first comparisons [98,
15] of the Posit8 format for training rely on an early version of the posit standard
where the es parameter is set respectively to 0, 1, 2 for the posit bit sizes of 8, 16,
32. Training with the Posit8 and the Posit]16 formats using es = 1 [87] explores less
standard Posit formats.

Posit8.0 arithmetic exposes satisfactory inference results on smaller networks [15]
with Quantisation Aware Training, comparing various small floating-point formats
for multiple network models and datasets, including LeNet-5 on the MNIST dataset.
Using the much cheaper INTS arithmetic for this last example results in very similar
network accuracy [105].
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Chapter 4

Implementing Fixed-Point Arithmetic
in Hardware

—1+1=7

91

— Non. 1. On parle une. .. ou un quand on est ensemble. . . mais dans notre
monde a nous 1 + 1 = 2, 24 2 = 4 comme ¢a on devient selfish, on prend
du pognon et on partage pas. . .

Mais si1 + 1 = 1... ou peut-étre que 1 + 1 = 11, et ¢a c’est beau !

— Jean-Claude Van Damme
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Floating-point numbers, with their ability to closely mimic the properties and
behaviour of real numbers, are a preferred choice for mathematical and scientific
computations. Although integers and fixed-point numbers offer fine-grain control
and efficiency, the preference for floating-point numbers is rooted in the comfort of
their usage.

When implementing operations on floating-point numbers in digital systems, it is
essential to remember they consist of three parts: an exponent, which is an integer; a
significand, which is a fixed-point number; and a sign, which is a binary value. When

57
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designing operators for floating-point numbers, it is inevitable to manipulate the
underlying integers and fixed-point numbers, which are implicitly scaled integers.

4.1 Integer Addition

The simplest way to add two integers is to add them bit by bit. This naive operator
is called the Ripple-Carry Adder. For each bit position, it adds the two bits of the
numbers a;, b;, as well as the carry ¢; arriving from bits of lower weight into the result
of the sum for this position s; and the carry required for the following computations

Cit1-

4.1.1 Basic block

Ci+1 Si Ci+1 Si
a; bl C;
. b ||
— HA
Cit1 5 |
Ci+1 Sg
a; )
a; [ ] bL [
+ b; + o + Ci + o
Ci+1 S o0 Ci+1  S§ [ N
(a) Half-Adder (b) Full-Adder

Figure 4.1: Operation executed by Half- and Full-adders, as well as their representa-
tion.

Half- and Full-Adders (Fig. 4.1) are the basis of the addition in hardware. A
Half-Adder (HA) into two bits a;, b; that have the same weight, and adds them
into a 2-bit positional encoding c;1s;, where s; has the same position ¢ as a; and
b;, and the carry c;,; has the position ¢ + 1. The formula executed by a HA is :
s; = a; b b;, ci11 = a; A\ b;. A Full-Adder (FA) takes a;, b;, ¢;, and outputs the sum
of those three signals as two bits called the sum bit s; and the carry out ¢; ;. The
operation can also be represented using a dot diagram.

The Full-Adder may computed with two Half-Adders (Fig. 4.1).
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4.1.2 Ripple-Carry Adder

a7 by  ag bs as bs as by a3z b3 az by a1 by ap bo

Ccr Ce Cs Cq C3 C2 C1

TFA%FA%FA%FA%FAHFA%FAHHA
! ! ! ! ! ! ! !

Cs St S6 S5 S4 S3 52 S1 S0

Figure 4.2: Sum of two 8-bit natural numbers with a Ripple-Carry Adder

Those components chained together make a Ripple-Carry Adder (Fig. 4.2).
During this computation, sq is computed very fast, while the full adder computing s7
had to wait for ¢y, co, c3, ¢4, C5, cg to be computed. The result of a ripple-carry adder
does not have all the bits finishing the computation at the same time. This latency
property must be taken into account when designing larger circuits.

The result of the addition of two natural numbers on 7 bits is a natural number
on n + 1 bits. When adding signed numbers encoded in twos complement, the carry
output is not used, as the modular representation on Z/2"Z enables the result to
change sign. If there is a risk of overflow and the extra bit is needed, it is simpler
to sign-extend the input numbers (see Sec. 2.2) before the addition. In this case,
ag = a7, bg = b;. After the addition, the sign of the result is in sg, and cg can be
ignored.

4.1.3 Integer Subtraction

by be bs by b by by bo
HA HA HA HA HA HA HA HA

S7 S6 S5 S4 S3 52 S1 S0

Cr Cg Cs C4 C3 Co C1

Figure 4.3: Computing —b.

If a subtraction a — b is needed, the naive way is to break down the operation
into a + (—b). The representation for —b in twos complement can be computed by
inverting all the bits of b, and adding 1 in the LSB position (Fig. 4.3). An incrementer
is cheaper than an adder as it uses half-adders instead of full-adders.

The computation of @ — b and the subsequent addition can be combined into
one computation (Fig. 4.4). This way, the carry propagation is only carried out
once, reducing the total latency compared to computing a + (—b) by assembling two
separate operators —b and a + .
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a7 br as bs as bs as by a3 by ax b2 a1 by ap by

YIYIYIYIYIY VY

Cyr Cg Cs C4 C3 Co C1

FA || FA | FA [~ FA [ FA || FA || FA [~ FA [ 1
\ \ \ \ \ \ \ \

St S6 S5 S4 S3 S9 S1 S0

Figure 4.4: Computing a — .

4.1.4 Carry-save

Algorithm 3 Adding 4 numbers with 3 Ripple-Carry Additions
tmpg = X +Y

tmp =2+ T

R < tmpg + tmp;

When more than one number must be added, it is also interesting to reduce the
number full carry propagations. If 4 numbers X, Y, Z, T are to be added, the naive
way is to do 3 additions (Algo. 3). However, this can be reduced with the carry save
representation, in which the result is kept as an unevaluated sum of two numbers.
The carry output of each adder block is saved as the second number, instead of being
propagated.

A Full Adder (Fig. 4.1) can be used to compress three bits into two. A large
addition of multiple numbers can be carried out in two phases, compression then
final addition. First, the larger numbers are compressed, that is partially added, into
a carry-save format. This might be done into multiple steps, but each step is parallel,
avoiding high latency carry propagation. The carry-save format is then converted
into an integer with a final ripple-carry adder.

Instead of the previous 3 adders, adding 4 numbers can be done with two steps
of parallel 3:2 compression, and then the final addition (Fig. 4.5). The length of the
critical path is reduced.

In this scheme, the two successive stages of compression are equivalent to the
construction of a 4:2 compressor. The use of the 4:2 compressor as a block can
help the synthesis tools, and is more comfortable when generating compression trees
as 4 is a more hardware friendly number than 3. While it might look like a carry
propagation, the carries from the first layer of FA go into the second layer of FA.
This chain of 4:2 compressors called a row compressor compresses the bits in a
parallel way.

In the aforementioned example, all the numbers to be added are on the same
number of bits, creating a rectangle of bits to be compressed, called a bit array [18,
114, 114].
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4:2 Compressor

T3 Yz 3 T2 Y2 225 1 Y1 oA E To Yo %o
| J | J ! | J : | J
FA FA | FA | FA
S 5 & 3 g 9 SR R
t3 to : ty :
| L L o
FA | FA | FA | HA
— — —
cich 53 3 $3 € 51 ¢
{ 4 bit Ripple-Carry Adder
| | | |
Ts T4 T3 T2 ] To

Figure 4.5: Sum of 4-bit numbers R = X + Y + Z + T using full adders (3:2
COmpressors).

4.1.5 Bit heap

In some cases, the numbers are not all of the same size, and row compressors cannot
exactly capture the shape of the bits added (Fig. 4.6). This less regular shape is
called a bit heap [34]. Extra care must be taken to correctly tile the bit heap with
compressors to reduce the latency and area of the sum [81].

Figure 4.6: Representation of a non-rectangular bit heap. Each dot rep-
resents a bit to be added. Figure generated by FloPoCo for the func-
tion evaluation of sin(§z) on [0,1[: flopoco generateFigures=1
FixFunctionByMultipartiteTable f="sin (xxpi/4)"

l1sbIn=-16 lsbOut=-16.

When the inputs of the sum are signed but the MSB of each number are not the
same, sign extension must be performed. Since those bits can be either O or 1, this
would add many bits to the bit heap, increasing the cost of the addition.

However, a trick [34] can be used to perform a cheaper sign extension in the
bit heap scenario. Since all the bits are replicated, the real information only holds
on 1 bit. If sign extending with s on 4 bits, instead of adding ssss on the bit heap,
one could add 11115 + —s. If s = 0, 11115 + =0 = 11115, + 1 = 100005 where
the most significant bit is then cut off. If s = 1, 11115 + -1 = 1111 + 0 = 11115,
performing the correct sign extension.
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e e 0000000 OO0 ® e

o000 000O0COCEO R X X
00000000 @0 0000
ec00000 00 = 0000000
e 00000 O 000000000
o0 0000 ) EEEEEEENNEN

Figure 4.7: Bit heap where sign extension bits (in red) are replaced by a constant
and the negation of the sign bit.

Since 11115 is a constant, it can be pre-added for all the inputs (Fig. 4.7).

4.2 Rounding

3.141592654. ..

%/—/ %/—/
Main part of o(7) | Boolean information:
is this 0?
"sticky bit"

Boolean information:
is this digit over or under 5?
"round bit"

11.001001000011111 .. .9

Main part of o(r) Boolean information:
is this 0?
"sticky bit"

Boolean information:
18 this bit 0 or 1?
"round bit"

Figure 4.8: Rounding of 7 on 5 digits (top) or 9 bits (bottom).

To round a number x (Fig. 4.8) to a fixed-point format, multiple pieces of
information must be computed. First, the value is truncated to the target precision,
in this example this value is Fjy = 3.1415 or F, = 11.0010010,. If z is positive,
x € [F, F + lulp|, if it negative, = € |F' — lulp, F], where ulp is short for Unit in
the Last Place (See. 2.5.1). [" 4 lulp is the next representable value in the fixed-point
format, and F' — lulp is the previous representable value.

Let us assume z is positive, as the negative case is symmetric. The rounded
value o(x) is either F' or F' + lulp. In this example, Fo + lulp = 3.1416 and
F5 + 1ulp = 11.00100115.

When rounding in decimal, one must figure out if z is closer to F', or ' + lulp.
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This is done by checking if the first digit truncated out is over or under 5. If it is
under 5, then o(x) = F, if itis over 5, then o(x) = Fyo + lulp. If it is exactly 5,
then more information is needed. If any of the subsequent digit are not O, then x is
closer to Fiy + lulp. Otherwise, z is exactly as close to Fyy and Fo + lulp, which
is called a tie. In decimal, the common tie breaking rule is Away from 0, where
Fjo + 1ulp is always chosen. In the example, o(x) = 3.1416 as the round digit is 9.

Rounding in binary follows a similar structure. The first bit truncated out is
called the round bit. If it is O, then x is closer to F5, otherwise there is a possible
tie. If any of the bits of lower magnitude is equal to 1, then x is closer to F5 + lulp.
Otherwise all the bits are 0, and z is exactly as close to F5 and F, + lulp. The
information "is any of the lower-magnitude bits equal to 1" is a boolean value called
the sticky bit. It can be computed as the OR if those bits.

If the round bit and the sticky bit are both 0, then x = F' exactly.

When computing the rounding of a value x, the two options for o(x) are com-
puted, I’ by truncation, and F' + lulp using an incrementer (or F' — lulp if the sign
is negative).

In two’s complement, /' — lulp must be computed with a subtraction.

In the sign-magnitude representation, |F'| 4+ lulp can both computes F' + lulp in
the positive case, and F' — lulp in the negative case.

With the two values computed, a multiplexer chooses the right result depending

on a control bit c:
Fifc=0,
o(z) = )
F+Tulpife=1

This bit is computed depending on multiple values: the rounding mode (see Sec. 2.5.1),
the sign, the round bit, the sticky bit and the value of the Least Significant Bit (LSB)
of F.

For the most common rounding modes, and in the sign-magnitude representation,
c is computed as follows:

* Round to Zero (RZ): Always use the truncated value F', ¢ = 0.

* Round Up (RU): If the sign s = 0, the number is negative, o(x) = F. If
s = 1, and z is exactly F, then o(x) = F, otherwise o(x) = F + lulp.
¢ = s A (sticky V round)

* Round Down (RD): If s = 1, then o(x) = F. If s = 0, and x is exactly F,
then o(z) = F, otherwise o(z) = F' — lulp. ¢ = (—s) A (sticky V round)

* Round to Nearest ties to Even (RNE): If the round bit is 0, o(x) = F. If itis 1
and the sticky bit is also 1, o(z) = F + lulp. In the case of a tie, when round
is 1 and sticky is 0, then the result is either number, between F' and F' + lulp
(or F' — lulp) whose least significant bit is 0. ¢ = round A (sticky V LSB)

* Round to Nearest ties Away from zero (RNA): Similar to RNE, but in case of
a tie the number is never rounded to F'. ¢ = round

Round to Zero is a very cheap rounding mode as there is no need to compute
F' 4+ 1ulp, explaining why some GPUs choose to only support RZ in their accelerator,
like the NVIDIA Tensor Core [90].
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Round to Nearest ties Away from zero can equivalently be computed by adding
%ulp before truncating. This is also a cheap scenario, as it does not require the
separate incrementer and multiplexer, and the %ulp can often be added during the
computation of x for cheap, for instance if it is included into a bit heap. This extra
bit for rounding is the single bit on top of the bit heap shown in Fig. 4.6.

Faithful rounding leaves even more freedom in rounding, as either £’ and F'+ 1ulp
are acceptable values. Less information on x must be known to compute its faithful
rounding than its correct rounding.

4.3 Integer Multiplication

+ 0 000 00DO0
+ 01 1 0 1 1
+ 00 00 0O

+ 0O 1 1 0 1 1

o1 01 1 0O0T1O0T1T1'1

Figure 4.9: Binary multiplication of 27 and 53.

Hardware multiplication of X and Y is carried out the same way as the paper-
and-pencil multiplication (Fig. 4.9).

w—1
XxY =Y (y;x X x2)

J=0

The first number X is multiplied by each digit of the second number Y, and shifted
accordingly. The terms 7; x X x 27 are called the partial products. It is even simpler
in binary than in decimal to compute the partial products, as every bit y; of Y is
either O or 1, that is y; x X is either X or 0.

This multiplication can also be seen as a bit heap (Fig. 4.10):

w—1w—1

i=0 j=0
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o 06060 00 [ ]
e 06060 00 o 00
o 060 000 e 0000
o 0600 00 i e 000 0 00
e 0600 00 ® 060 06060 0 00
e 000 00 ® 00060600 0 00
Figure 4.10: Bit heap representation of the 6 x 6 multiplier of the previous example.

The construction of the bit heap is not very expensive, using only AND gates,
and the placement of the bit at the correct power of two is pre-computed. The bulk
of the hardware cost is in the compression of the bit heap, which has been the subject
of much research [18, 114, 114, 81]. A trick called Booth encoding [6] halves the
height of the bit heap.

4.4 Bit Vector Manipulations

While manipulations of the bit vectors are not exactly unique to fixed-point, some
of those operations are useful basic components for fixed-point and floating-point
operators, in particular, the Shifter and the Leading Digit Counter.

All the figures from this section come from [34].

4.4.1 Shifter

‘0 1010010 Represents 20.5

3
—————0 1 0.1 0 0 1 0| Represents20.5x 273 = 2.5625

2
00101001 0— Represents 20.5 x 2% = 82

Figure 4.11: Example of a right and left shift.

In decimal, shifting the decimal point corresponds to multiplying by a power
of 10. In binary, it is equivalent to multiplying by a power of 2 (Fig. 4.11). In this
example, the fixed-point numbers are shifted by a constant, are still encoded on 8
bits, and only the position of the relative point changed. Constant shifts, which are
just a change of implicit scaling, do not require any logic to be carried out.

Shifting by a variable integer requires a shifter operator. It inputs a fixed-point
number X and a natural number S, and shifts the fixed-point by S positions. In the
case of a left shifter, the output represents X x 2°, and in the case of a right shifter,
the output represents X x 277,

S can be signed and the resulting shifter is bidirectional. Most of the shifters
needed for the arithmetic operations on fixed-point and floating-point numbers can
be made unidirectional by either shifting X left starting by the right-most position, or
shifting X right starting by the left-most position. This transformation only requires
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adding a constant to S, which can often be slipped into the hardware component that
is computing the shift value S.

X

110
] Y

OXXXXXXXXXX XXXXXXXXXX()

-

So 1
ill

DOXXXXXXXXXXX XXXXXXXXXXX0(0
S1 1 0
13
0000XXXXXXXXXXXXX XXXXXXXXXXXXX0000
S9 \\ 1 0 /
117
00000000XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX00000000
53 | .}

L

v
R

Figure 4.12: Architecture of a full right shifter for wy = 10 and max_shift = 15.
The s; are the bits of S. For a left shifter, just exchange the two inputs to each
multiplexer, or (equivalently) complement all the s;. Figure from [34]. Below, the
common representation of a full right shifter.

The full shifter operator (Fig. 4.12) is made of successive multiplexers (Fig. 1.15).
In this example, X of size wx = 10, can be shifted right by S = E?:o 5; x 2
positions, that is a maximum of 15 positions. The shifter output R is of size
wr = 10 + 15 = 25. In the first step, X is either not shifted or shifted by 1,
depending on the value of s,. In the i'" step, X is either not shifted or shifted by 2¢,
depending on the value of s;.

In this example, both sides of the number are padded with bits equal to 0. For
integers encoded in twos complement, it is desirable to pad on the left with the sign
bit of X instead of 0, which performs the sign extension.

In some cases, one might want a shifter where wr < wy + max_shift, which
leads to a possible loss of information. If wr = wx, then the shifter is called a barrel
shifter. The bits that are shifted out can either be thrown away (Fig. 4.13a), or ORed
together as a way to detect if only Os were lost, which is no loss of information, or if
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X
12
00000000XXXXXXXXXXXX XXXXXXXXXXXX
— —
53
12
X 0000XXXXXXXXXXXX XXXXXXXXXXXX
{12 ‘iﬂil
XXXXXXXXXXXX() XXXXXXXXXXXX
—— — o -
S0 N7 52 [oR]
12 12
y ¥
TRXXXXXXXXK OO TRXXXXXXXKXK ODOXXXXXXXXXXXX XXXXXXXXXXXX
n——— N7
12 — — |
51 OR
XXXXXXXXXXXX0000 XXXXXXXXXXXX 9
Sg——————— N1 0/ OXXXXXXXXXXXX XXXXXXXXXXXX
12
00000000
XXXXXXXXXXXX XXXXXXXXXXXX
—
8 ————N_7 S0
12 12
R R sticky

(a) Architecture of a 12-bit left barrel
shifter. The red bits are discarded.

(b) Architecture of a 12-bit right barrel shifter
with early sticky bit computation.

Figure 4.13: Architecture of two shifters with loss of information. Figures from [34].



68 CHAPTER 4. HARDWARE FIXED-POINT ARITHMETIC
there was any 1 (Fig. 4.13b).

4.4.2 Leading Digit Counter

The Leading Zero Count (LZC) counts the number of most significant zeros to the
left of the first one. The Leading One Count (LZC) counts the number of most
significant ones to the left of the first zero. The Leading Digit Count is either a LZC
if the value of the MSB is 0, or a LOC. The following explanations will use the
Leading Zero Counter as an example.

The construction of the LZC operator (Fig. 4.14) uses a similar idea as the shifter,
but functions the other way around. The size of the count C' is determined by the
maximum number of zeros that can be counted in the input X: we = [log,(wx)].
Let wy = 14 for the example, then we = 4. If the first 2¥¢~! = & bits are 0, then
Cwo—1 = 1, and those first 8 zeros are removed from X. Otherwise, ¢,,.—1 = 0, and
the 8 last bits of X are removed. This repeats until X was completely counted.

X
i 14

XXXXXXXXXXXXXX00000000
8

NOR
C3 I

XXXXXXXXXXXXXX0000
NOR —
C2 A\ 0 /

XXXXXXXXXXXXXX00
221

., LNOR —

! 0o /
¥
XXXXXXXXXXXXXX()
Co l
i A\ 0
v 1
C R

Figure 4.14: Architecture of a 14-bit combined leading zero counter and left shifter.
Figure from [34].

Often when dealing with floating-point numbers, the input X is shifted left by the
result of C' after the LZC. Since the LZC already contains partial shifting of X for
the count, the two operators (LZC and Shift) can be combined into a Normaliser. A
Normaliser takes the input X, and returns C' the count of leading zeros in X, as well
as R = X x 2¢. This component is crucial to construct the normalised significands
in floating-point operators.
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Now that all the important subcomponents are described, we can dive into the
construction of floating-point operators.
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This chapter compares the implementation cost of a dot product operator depend-
ing on which 8-bit format is used. It aims to help machine learning researchers make
informed decisions when choosing formats for their networks. In machine learning,
the metric often used to compare the efficiency of formats is the network accuracy
compared to the number of multiply and add operations performed. This metric
tends to ignore that operating on some formats is much more expensive than others.

The considered 8-bit formats are int8, Posit8 with es € {0, 1,2, 3}, and the two
FP8 formats: ESM2 and E4M3 (see Sec. 3.3). Int8 is a common format used for
very cheap deep neural networks computation, however its lack of range make it

73
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less effective than floating-point formats. The wider dynamic range of 8-bit floating-
point formats allows to directly quantise a pre-trained model down to 8 bits without
losing accuracy by fine-tuning batch normalisation statistics [112]. For the sake of
comparison, FP16 is also included as it is a standard format for machine learning.

5.1 Floating-point Hardware Basic Blocks

The operators presented for this comparison are constructed using multiple blocks
that are at the basis of most floating-point operators.

5.1.1 Internal Format and Floating-point Pack and Unpack

As a reminder (see Sec. 2.4), normal floating-point numbers are encoded as a sign .S,
a biased exponent F, and a fraction F that is interpreted as (—1) x 2870 x (1 + F).

Subnormal floating-point numbers have an exponent equal to 0, a sign .S, and a
fraction F that is interpreted as (—1)% x 2071 x (0 + F).

The floating-point format is a format where some information is compressed, in
particular the encoding of the special values, and the implicit bit of the significand. In
order to compute with floating-point numbers, one must first retrieve the compressed
information, that is unpack the floating-point in an internal format. This internal
format has an unique representation for both normal and subnormal numbers.

Internal Format and Floating-point Unpack

This internal format (Fig. 5.1) contains its sign X, its biased exponent Xy,
with an unified exponent for subnormals, its significand X, and a vector of flags
Xiags (isnormal, isinf, isnan, issignan, iszero). Unpacking enables to have a single
representation for both subnormal and normal numbers: (—1)Xse x 2Xew=b 5 X .
Here, X, is in the format uFix (0, —wp), while F" was in the format uFix(—1, —wp).

The implicit bit is made explicit in the significand, so there is no need to normalise
subnormal inputs, they will just have a non-normalised significand. In other words,
Xie can be any value of the fixed-point format uFix(0, —wp). The subsequent
additions or multiplication of X, will use fixed-point hardware and work all the
same.

Floating-point Rounding and Packing

When rounding a number z into floating-point number of format F(wg, wp), one
must fill the three fields of the number.

The sign X, is easy to fill. The rest of the computation is then done on |z,
except for the rounding of the fraction.

If = is a special value: exact zero, NaN or 00, then it can be encoded directly
into the floating-point format.

For the exponent, one must compute the weight of the most significant 1 of x.
When converting a fixed-point number into floating-point, a Leading Zero Counter
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X

Unpack (wg, wg)

f wiN
E 1 N wr E
| 1.1 T 0...00...0 |
| [ 1 | | | — !
E = =L = E
: — | !
: Special Flags
: ) wp +1 E

Xsign Xﬂags Xexp Xsig

Figure 5.1: Unpacking a floating-point number with exponent size wg and fraction
size Wr.
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(LZC) can be used. The unbiased exponent e = E — b is computed relative to the
fixed MSB of the fixed-point format. If the result of the LZC is [, then e = MSB — [.

If e > ey, then x is too big (in magnitude) to be representable in the chosen
format, o(z) = £o00. If € < ey, then z is too small to be representable, and z is
rounded to zero: o(z) = £0. If epin < € < €min_normal» then z is a subnormal and its
exponent is € = €y normal- Otherwise, emin normal < € < €max, then x is a normal
number and its exponent is ¢’ = e. This classification is not final as the rounding of
F' can modify it, however it changes how F'is computed.

The rounded significand of the result is computed as the fixed-point rounding
of |z| x 27¢ in uFix(0, —wr), following the rounding described in Sec. 4.2. The
incrementation when rounding gives a temporary post-rounding significand My, €
uFix(1, —wr)': the bits of My, are written mimq . .. M_y,..

The final exponent egy, is either ¢’ or ¢/ + 1 depending on if carries during the
incrementation changed the position of the first significant one. The biased exponent
is B = egqqa + b for normal numbers, or £ = 0 for subnormal numbers.

If the number is normal, and if the carries did not change the position of the first
significant one (m; = 0,my = 1), then F' = m_1m_y...m_y,. and egy = €'. If
the number is normal, and the carries changed the position of the first significant one
(mq = 1), then M, = 100...02 and F' = 0 and egna = €’ + 1, potentially resulting
in an overflow result.

If the number is subnormal, and rounding made it not subnormal (1m; = 0, my =
1), then F' = m_;m_y...M_y, and €final = €min_normal- 1f the number is subnormal,
and rounding did not change that (m; = 0,mp = 0), then ' = m_1m_o ... m_,,,
and £/ = 0.

As the bias b is a constant, its value can be included into other additions on the
exponent (like the subtraction by the leading zero count), and it is mostly ignored in
the literature when describing floating-point operators.

Moreover, since egn, = €' + 1 only when a carry comes out of the incrementer,
incrementing the concatenation of the biased exponent and the truncated fraction
E Fiune Will result in the correct packing, taking care of all the issues with subnormals
and £o0 encoding.

5.1.2 Posit Pack and Unpack to Internal Format

As a reminder, posits are encoded such that:

0 if S = 0 and all other bits are 0
NaR if S = 1 and all other bits are 0
((1 _ 35) + F) x 2(172S)><(2ES><R+E+S)

otherwise

The regime R is encoded in unary in the format, while the exponent £ and the
fraction F' are encoded in binary, like floating-point formats.

I'The term mantissa is generally avoided when talking about floating-point numbers as it is unclear
if it refers to the fraction or the significand. However, since S is already used for the sign, the
shorthand M is occasionally used for significands in this thesis.
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Posit Unpack
Unpacking posits is less straightforward than floating-point numbers due to the

variable field width of the regime R.

Posit8.es

8

7

A\ To Absolute Value /

7

Table Unpack of
Positive Posit

1 wWE 1+wp

Xsign Xﬂags Xexp Xsig

Figure 5.2: Architecture of a table-based posit unpacking.

Various architectures can be used to unpack posits into an internal format, from
architectures specific to unpacking [119] to adapted conversion from posit to floating-
point architectures [87, 97, 30].

Exploration of various conversion methods in [30] suggests that a factored table
implementation (Fig. 5.2) is cheaper than a logic implementation when converting
Posit8 to FP16. For unpacking, the difference should be even starker as the output of
an unpacked Posit8 is smaller than an FP16. An internal format that can accommo-
date the Posit8.es input format has wr = 5 — es exponent bits, wp = 4 + es fraction
bits, a sign bit and an exception bit to encode the NaR value. The size of the table
output in the decomposition is 1 + wg + (1 + wr) = 11 bits.

Posit Rounding and Packing

Rounding a posit is similar to rounding a floating-point number, except that the
fraction field does not have a fixed size.

The es least significant bits of the exponent of a posit are encoded in binary in
the exponent field, and the most significant bits of the exponent are encoded in the
regime field in unary.

If the regime field is k£ zeros followed by a one then R = —Fk, while k ones
followed by a zero then R =k + 1

Once the size of the regime field is known, the exponent and the fraction are
rounded and packed similarly to floating-point numbers.
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5.1.3 Multiplication on the Internal Format

X, exp Y;,xp X sign Y;ign X, sig Y;ig

WEg 1 1+ wp, uFix(0,—wr)

Y,

wg + 1 1 2% (1 +wp), uFix(l, —2wp)
Pexp Psign Psig

Figure 5.3: Core computation of the floating-point multiplication. It is preceded by
floating-point unpacking, and followed by floating-point repacking

Floating-point numbers are simpler to multiply than add (Fig. 5.3). Let X and Y
be two unpacked floating-point numbers.
The formulas for multiplying X by Y, using notations from Fig. 5.3, are:

X x Y = ((—1)%sen x 2%ew=b 5 X)) x ((—1)%n x 2¥0 ™0 5 Y
(_1)Xsign@}/sign % 2Xexp—b+Yexp—b % (Xsig % Ysig)
(_1)Xsign@ﬁiign ¢ (XexptYexp) =20 o Xsig % Ysig

(=1

1 Psign X 2Pexp*2b X PS

ig

This component computes the exact result of the product. It also works if
the inputs were not normalised numbers, and does not require normalising input
numbers.

If the result need to be rounded to an IEEE number, a rounding component can
follow the product (see Sec. 5.1.1). Beware that the exponent P, here has a bias of
20, and that P, is in the format of uFix(1, —2 X wy), which means it has two bits
to the left of the fixed point.

5.1.4 Addition

The difficulty in floating-point addition is that the fractions cannot be added as is,
except if they have the exact same exponent. An alignment phase must be executed
beforehand, so that each bit of one number is added to the bit of the same weight of
the second number.

For any given floating-point format F(wg, wr), a associated fixed-point format
sFix(2vs—1 —2we—1 4 2 — p) can represent every floating-point number without
loss of precision. The alignment phase needed for floating-point addition (Fig. 5.4)
can be done by converting the input floating-point into this fixed-point format, and
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10-1
10 [0[1 0 10[010] 0] 1010
+ + 8-1

2.75 [0[1.0/0/0[0'1°1] [0O] 10,11

12.75  Not representable [0[00001100,1110000000]

>

Rounded to 3 Rounded to

13 [0[1T0'1/0[T/0'1] [O] 1101

Figure 5.4: Example of the sum of floating-point numbers in [F(4, 3) (left) using its
expansion in the fixed-point encoding sFix (8, —9) (right).

then adding the fixed-point numbers together. The fixed-point number is finally
converted into floating-point.

In hardware (Fig. 5.5), transforming an input X into its fixed-point representation
can be done by shifting left the significand X, by the biased exponent X, — 1.
Once the sum is carried out in fixed-point, a Leading Zero Count enables to compute
the exponent of the result. The fixed-point number is then normalised and rounded
(see Sec. 5.1.1).

This is obviously a large adder for very few non-zero bits. It makes sense
when adding many terms of a format with little range, which is the object of this
chapter. Using a full-precision fixed-point accumulator (often referred to as a Kulisch
accumulator) was proposed for a sum of many terms as a way to avoid loosing
accuracy [78, 80].

Early Long Accumulators were iterative, accumulating one product per instruc-
tion [78, 80]. The corresponding large fixed-point addition can be sped up thanks to
parallel execution [79]. A two’s complement, high-radix carry-save representation
of the accumulator allows for high frequency operation at low hardware cost [37].

The classic method for floating-point addition reduces the size of the adder, by
making the alignment a little more complicated. This method is described in the next
chapter (Chap. 6).

5.1.5 Fused Multiply-Add

The Fused Multiply Add (FMA) is an IEEE operation computing o(z X y + z) with
one rounding. It enables to speed up computations, as one instruction computes two
operations, and is also more accurate since there is only one rounding step.

The full-precision fixed-point alignment method of the previous section can
be used for the FMA. A product of floating-point numbers also has an equivalent
fixed-point representation, which be deduced from the parameters wg, wg of the
floating-point format. For products, LSB = —2 x (2“5~} — 2 4+ wp) and MSB =
2 x (2we~1 —1). This defines the full-size in bits w,, of the fixed-point representation
of the product. Values for the general purpose floating-points formats are summarised
in Table 5.1. A more specific table for different 8-bit formats is given later (Tab. 5.2).
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| |¥
Unpack F(wg, wr) Unpack F(wg, wr)
wWg {1 +wp

Negate

2UE 4 pp — 2

+
Leading
Zero Count
Normalisation
Shift
Left
|
Round
R

Figure 5.5: Architecture summing two floating-point numbers in F(wg, wr) using
its expansion in the fixed-point encoding sFix(2v2~!, —2vE=1 + 2 — wp).

Format Product

mult. size | LSB | MSB | Full-Size w, (bits)
FP16 11 x 11 -48 30 80
BF16 8 x 8 -266 | 254 522
FP32 24 x 24 -298 | 254 554
FP64 53 x 53 | -2148 | 2046 4196

Table 5.1: Size of fixed-point formats for a product.
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This conversion to a common fixed-point format (or alignment) requires shifting
left Pz by Pexp — Pexpmin = FPexp — 2 bits, since the smallest biased exponent is 1
since subnormals (£ = 0) behave as if &/ = 1. Alternatively, this is equivalent to
shifting right P, by w, — FPeyp bits. In both of those cases, the shift also performs
a sign extension. Once converted to fixed-point, the terms can be summed using
integer addition into a full-size accumulator (Fig. 5.6). Multiplications, conversions
and additions are all exact. The result may then be normalised and rounded (only
once) to the output format.

This approach is quite efficient for formats with small full-size accumulators, so
has been used in particular for FP16 FMA [7]. It can also be extended to add more
than one FP16 product [8]. As the sum of products is exact, it is associative and can
be parallelised without any consideration of the exponent values.

5.2 Dot Product Operators

Deep Neural Networks can be broken down into multiple layers, which have different
computational steps (Fig. 5.7).

In this chapter, the dot product computation is broken down into three steps,
where the inputs X, Y; are multiplied and added to a full-precision fixed-point accu-
mulator Z, that is then saved in memory. This allows multiple exact accumulations
to be carried out. Full precision accumulation is also required by the posit standard
to compute dot products [54].

Once accumulation is complete, the fixed-point accumulators need to be con-
verted to FP32 for use by non-trivial activation functions. Then, the results of
the FP32 activation functions may be compressed back to a 8-bit floating-point
representation.

5.2.1 Dot-Product-and-Add
Unpacking

The first step is to unpack the multiplicands into the internal format, using either the
floating-point or posit unpack depending on the input format.

For posits, the range of exponent of the intermediate representation is much larger
than the actual range of the posit format. For example the smallest Posit8.2 product
is 2748, while the smallest exponent of the internal format is 27%2. The unpacking
step adjusts the bias of the internal format for posits such that the exponent of the
smallest posit is encoded with the exponent 0.

NaN and oo Values

A full-precision dot product cannot generate oo as the format is by definition large
enough so that no overflow is possible. NaN can only be generated by operating on
input oo values (co — co or oo x 0). In the operator output, any oo or NaN flags an
invalid result.
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X =-25 Y = 0.375 Z =075
125 x2v3 X 1.5 x 23 + 1.5 x 2273
1{1/0/0]0 1] ojo/o/1]1 0] ojo/1]/0]1 0]
X Y Z
L ¥
FP Mult

[1] [of1lof1] [of1 1]t 1]0]

WA,

[1] [of1]of1] [1]o 0f01]0]

Wy — Pop =11 =5 Align Align
(1.0 00 1 0] | |
(0] [11]0

Fixed Add

wZ—ZeXp:6—2

(rfafafafa]a]1]1]1]1]o]1]o0]0]0]0]

N Extra-bit for overflow detection
Overflows F(3,2) Underflows F(3, 2) \ 1°2C

lojo/ 0000000 0/1/10000]

l=9 Round and pack

1]/0 0 0]1 1] 1
R = —0.1875

Figure 5.6: Example of alignment for the FMA using a full-size fixed-point format.
To 2C refers to converting the sign-magnitude significand into two’s complement.
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Memory/register subsystem

Full-precision ﬁxed—pointl l S J Small floating-point format
7+ 30 X x Y,
Full-precision fixed-point l Dot product
. + 1s broken down
Memory/register subsystem .
I in 3 steps
[ Fixed-point to FP32 ]
FP32
[ Adapt quantisation domains (scale) ]
|
[ Compute activation function ]
FP32

[ Compress FP32 to storage format ]

Small floating-point format

Memory/register subsystem

Figure 5.7: Architecture of steps for ML. In red the operators addressed in this
chapter.

In the specific case of Machine Learning applications, distinguishing between
oo and NaN is useless. This concurs with the fact that the EAM3 from the OCP
standard [103] does not encode oo. Accordingly, when unpacking input, the oo and
NaN flags are converted to a single error bit which has the same meaning as the posit
NaR [54].

A flag bit is used to encode an error in the accumulator result (and input 7).
It is raised if the error flag for the input accumulator Z is raised, or if any of the
multiplicand was oo or NaN. It is also raised if the sum overflows the accumulator,
which may happen when the operator is used sequentially more times that it was
designed to be used. Here, there is no risk of overflowing the accumulator when less
than D = 4096 products are added, which corresponds to using the operator % times
sequentially.

Product alignment
Multiplication

The multiplication of the significands and their alignment into a w,-bit fixed-point
data path is carried out in the same way for all the floating-point formats. The only
difference are the size of the different bit vectors, depending on the format (Tab. 5.2).
Each format has a different size of significand, leading to a different multiplier size.

The multiplication is carried out using the multiplier component previously
described, that computes the product without loosing accuracy.
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Xo Yo
Unpack Unpack
FP Mult
wg + 1 {2)((1—"-%’}7‘)

a
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/ LShifty_4 J

"l =
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Figure 5.8: Architecture summing N floating-point products to a full-precision
fixed-point accumulator Z.

Format Product Accumulator
Mult. | LSB | MSB w, || MSB Wace
size (in bits) (in bits)
int8 8 x 8 0 15 16 31 32
E4M3 4 x4 -18 16 36 44 63+1
E5SM2 3x3 -32 30 64 94 | 127+1
Posit8.0 6 %6 -6 6 26 50 63+1
Posit8.1 5% 5 -24 24 50 38 63+1
Posit8.2 4 x4 -48 48 98 78 127+1
Posit8.3 3x3 -96 96 194 158 | 255+1
FP16 11 x 11| -48 30 80 78 127+1

Table 5.2: Multiplier sizes, product sizes and accumulator sizes for the exact dot
product accumulate operator.
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Alignment

Each format has a different range, leading to a different size of full-precision fixed-
point format:

e For the IEEE-754 floating-point formats: sFix(2 x (2971 — 1) 4+ 1,2 x
(2wE_1 — 24 U)F))

* For the E4M3, which encodes normal values on the largest binade: sFix(2 x
2ue—l 11 2 x (2“’E*1 — 24+ wp))

* For the Posit formats, the format is computed with minPosit and maxPosit
described in the standard [54].

* For integers, no alignment is needed, the product is on sFix(15,0).

The accumulator Z is of size w,.. > w,. The exact size depends on the number
of products D added, as the fixed-point format is extended with [log,(D)] extra
bits on the left to absorb the possible overflows. For ML applications, at least 12
bits were added to accommodate the D = 4096 products. This number is then
rounded up to the next power of two to match standard data type sizes. Programming
from high-level languages requires that the accumulator be loaded to and stored
from memory, likely using the wide memory access instructions which are usually
provided for the SIMD data types; this motivates that the accumulator size be a
power of 2. Loading and storing the accumulator also enables to parallelise the
dot product computation across several processing cores while ensuring that a final
reduction across cores yields the exact result.

The posit quire [54] encodes NaR (the error value) as the sign bit set and all other
bits cleared. This makes the decoding of an error value pretty expensive, as a logical
OR must be carried out on nearly the whole accumulator size. In order to save logic
when converting the accumulator contents back to FP32, all architectures presented
in this chapter use a separate error flag, that is concatenated to the accumulator when
saving them to memory.

Accommodating the Posit Format

The smallest Posit number has no fraction bits, as all the encoding space is used by
the regime. When aligning the posit (Fig. 5.9), the product is shifted by the value
of the exponent, and the 2 X wp least significant bits are removed from the aligned
product, as they cannot be 1.

Sum

The fixed-point aligned products are summed with a bit heap compressor tree, using
a FloPoCo implementation [81]. The resulting fixed-point accumulator R can then
be saved into the memory subsystem, either to be reused as Z in further dot products
or converted to FP32.
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Fixed-point expansion of Product

Maximum shift

- Minimum shift

Sum overflow bits

Accumulator

Figure 5.9: Alignment of the posit product.

5.2.2 Full-precision Fixed-point to FP32 Conversion

The FP32 format is useful for the subsequent scaling and activation function com-
putations. It is easier to move around than the larger fixed-point accumulators. The
computations can also be carried out using the FP32 operators of the general purpose
core.

The largest of the proposed accumulator is sFix(158, —96), while the FP32 range
is uFix (127, —149). Therefore this conversion cannot underflow FP32, and does not
need to be able to create subnormal results. However, it could overflow the format.

This operator is a floating-point round and pack basic operator. The main
modification is that the error flag is used to detect and output a NaN value. Most of
the logic in this operator is dedicated to the Normaliser (Fig. 4.14).

5.2.3 Quantisation: FP32 to 8-bit Format Conversion

This operator is used after the activation function.

When converting to a floating-point or posit formats, it is composed of an
unpacking, followed by a round and pack operator.

There is no need for a normaliser since the range of FP32 is so much larger than
the range of the 8-bit formats. FP32 subnormals will always be rounded to O for
floating-point, or minPosit for posits.

When converting to an INTS8 format, the input is unpacked, shifted with an 8-bit
shifter, and rounded as a fixed-point.

5.3 Synthesis results

The organisation of Kalray’s accelerator (see Sec. 3.2) allows 256 bits for each vector
(X5), (7). This memory limit fixes N = 32 for 8-bit formats, and N = 16 for 16-bit
formats

5.3.1 Dot-Product-and-Add

Table 5.3 shows synthesis results for the exact dot-product-and-add operator. Each
operator is synthesised with the Synopsys Design Compiler NXT for the TSMC
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Format | # of products || Area (um?) | Power (mW) || OPs/W ratio
FP16 16 8040 4.12 0.4
INTS8 32 4107 1.67 1.0
FP16 32 15482 7.84 0.21
E4M3 32 4896 2.73 0.61
ESM2 32 8266 4.67 0.36

Posit8.0 32 7188 3.93 0.42

Posit8.1 32 9222 5.19 0.32

Posit8.2 32 17821 9.85 0.17

Posit8.3 32 26217 17.23 0.1

Table 5.3: Synthesis results of the exact dot product accumulate operator, with a
target frequency of 250 MHz.

16FFC node with a target frequency of 250 MHz, to simulate 5 cycles at 1.25 GHz.
Operations per watt figures are normalised relative to the int8 format as it is the most
energy-efficient representation.

The operator for FP16 with N = 32 is added for comparison purposes, but its
memory usage is too high for its integration in the accelerator.

The main takeaway from Table 5.3 is that the largest FP8 format ESM?2 has twice
the performance compared to the baseline FP16 operator, for a 3% increase in area.
It is this more energy efficient to implement separate FP16 and FP8 operators.

Another observation is that the operator with Posit8.2 multiplicands is not better
than the one with FP16 multiplicands, whether on dynamic power or on area. This
can be explained by the fact that the wider range of the Posit8.2 values compared to
FP16 leads to a larger fixed-point representation of shifted products (96 bits versus
80 bits from Table 5.2), which in turn implies wider shifters and compression tree.
Effects of these increases in the fixed-point data path appear comparable to those of
the decrease of the multiplier sizes.

The cost of the decompression from the Posit format to a sign-exponent-mantissa
format also appears significant, having arguably a bigger impact on the hardware
complexity than expanding to fixed-point representation. In particular, the Posit8.0
and Posit8.1 have a fixed-point representation of the same size as the E4M3 floating
point, but have an extra cost of 47% for Posit8.0 and 88% for Posit8.1. The cost of
Posit8.1 is even larger than ESM2 by 12%, even though ESM2 has an accumulator
twice the size. Posit8.3 requires the widest accumulator, which leads to its poor
energy efficiency.

5.3.2 Full-precision Fixed-point to FP32 Conversion

The accumulator to FP32 conversion operators are synthesised with Synopsys Design
Compiler NXT for the TSMC 16FFC node with a target frequency of 1.25 GHz, and
were fully pipelined in 2 cycles (Tab. 5.4). The resulting power and area figures are
5% to 10x lower than the corresponding dot product operators. In a matrix-multiply
accumulate, conversion operators are only used once per matrix element, compared
to % usages of the dot-product-and-add, further lowering their relative contribution
to total energy consumption.
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Formats Waee (bits) || Area (um?) | Power (mW)
Posit8.3 255 2488 3.81
FP16, ESM2, Posit8.2 127 1542 2.41
E4M3, Posit8.1, Posit8.0 63 743 1.22
INTS8 32 427 0.74

Table 5.4: Synthesis results of the accumulator to FP32 conversion operator,
pipelined in 2 cycles at 1.25 GHz.

5.3.3 Quantisation: FP32 to 8-bit Format Conversion

Format || Area (um?) | Power (mW)
FP16 117 0.22
INTS8 99 0.18
E4M3 66 0.17
ESM2 65 0.16

Posit8.0 103 0.20

Posit8.1 122 0.21

Posit8.2 207 0.29

Posit8.3 110 0.21

Table 5.5: Synthesis results of the FP32 to low bit-width floating-point conversion
operators, with a single-cycle latency (no pipelining) at 1.25 GHz.

The conversion from FP32 to the 8-bit format are synthesised with a target
frequency of 1.25 GHz (Tab. 5.5). None of the FP32 to low bit-width conversion
operator need pipelining, while their power consumption and area appear one order
of magnitude smaller than those of the accumulator to FP32 conversion operators.

5.4 Integration into Kalray products

This exploration further cemented the interest in a dedicated dot product operator
for 8-bit formats instead of only decompressing the 8-bit storage format into FP16.
Some details were still to be determined: which FP8 format to use ? Should the
accumulator be exposed in the ISA ? This section addresses these questions.

5.4.1 Combined E4M3 and ESM2 operator

As research on FP8 machine learning progressed, it became apparent that both
formats E4M3 and ESM2 were required for ML acceleration [112]. A common
E5M3 format can be used to represent both E4AM3 and ESM2 formats, and the same
template of architecture can be used.

The cost of this operator is barely higher than an ESM2 operator.
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5.4.2 Storage of the Fixed-Point Accumulator

Instead of storing the accumulator in the memory subsystem, that is accelerator
registers, it can be stored in dedicated registers inside the accelerator circuit. Since
those accumulators are not accessed by the user or moved around, it is not needed
for the fixed-point accumulator to be a power of two. To accommodate the larger
dot product size of transformer networks, 16 bits instead of 12 are added to the
fixed-point accumulator, enabling to add around 65k products.

The error flags are also separated from the accumulator, as they are not computed
exactly at the same pipeline stage.

Xo Yo ce Xno1 Yy
Ry <e==seesssssnens ,
\ I Flags <--- i
Stage 1 Mult. and shift
Stage 2 Bit heap compression
Stage 3 Final add i i
Stage 4 Convert to FP32
l Flags ---- : i
R By =ommmsmmmmeneees :

Figure 5.10: Pipeline stages of the FP8 dot product operator designed for Kalray.

The resulting dot product operator is pipelined in 4 cycles at 1.56 GHz on the
TSMC 4 nm node. Instead of separating the dot product and the conversion to FP32,
this operator links them together (Fig. 5.10), and enables early exit of the fixed-point
accumulator [2¢;,. The last stage being only needed for the conversion, it can be
clock-gated to save power when the dot product is still looping, and reactivated when
the result must be converted to FP32.

Synthesis results are presented in the next chapter (Chap. 6), where they are
compared to other similar dot product operators synthesised on the same node.

5.5 Conclusions

This chapter compared of the implementation cost of using various 8-bit number for-
mat for operators that exactly compute a 32-term dot product for 8-bit floating-point
vectors and accumulate them in full precision into a large fixed-point accumulator.
These dot product operators are complemented by two families of conversion opera-
tors, one for the conversion of the wide accumulators to FP32, and the other for the
conversion of the FP32 values to the 8-bit floating-point formats.

Synthesis for the TSMC 16FFC node and a target frequency of 1.25 GHz exposes
the significant advantages of using FP8 formats in terms of dynamic power and
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implementation area.

Supporting Posit formats is expensive, and they are a very commonly used format,
which was detrimental when choosing which formats Kalray will implement. The
industry moving towards the support of both FP8 formats was also a decisive factor
when shaping the final operator for Kalray’s accelerator (Fig. 5.10).
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The dot product operators (Fig. 6.1) presented in this chapter have a similar
structure to the ones described in the previous Chapter (Chap. 5).

Memory/register subsystem

Z+ YN X x Y,

|

[ Adapt quantisation domains (scale) ]
[ )
[ ]

|

Compute activation function

|

Compress FP32 to storage format

}

Memory/register subsystem

Figure 6.1: Architecture of steps for ML. In red, the operators addressed in this
chapter.

The only difference is that the accumulator Z and the result R are floating-point
numbers, which introduces logic to unpack Z and pack R (Fig. 6.2). If the operator
is used multiple times sequentially, the conversion to FP32 at every step will worsen
accuracy compared to architectures from the previous chapter.

This chapter will first present various architectures for the FPY> component (see
Sec. 6.1)

It then expands (see Sec. 6.2) on these designs to enable the reuse of architec-
tures designed for machine learning formats (FP16, BF16) to compute dot product
operations with FP32 multiplicands. The core idea is to adapt the principles of
double-word arithmetic [96] to linear algebra. This method is commonly used
in software [46] when the available hardware is not precise enough for a specific
application.

6.1 State-of-the-Art Dot Product Operators

The full-precision fixed-point accumulation presented in Chapter 5 can be used to
implement FPX.. It needs to be modified by adding unpack and pack components
such that Z and R are floating-point numbers.

This section presents other methods of implementing FPY base on classic floating-
point addition.

6.1.1 Floating-point Addition: Relative Alignment

Two terms

The classic way to compute a floating-point addition of two numbers is to align the
significands on the one with the largest magnitude [34] (Fig. 6.3). The size of the
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Figure 6.2: High-level architecture of dot products operators.

adder is about the size of a significand, which is much small than the size of the
equivalent full-precision fixed-point. The significand with the smallest magnitude is
shifted right relative to the largest one, with the bits shifted out ORed into a sticky
bit to be able to correctly round the result.

More than Two Terms

When adding more than two terms, for example three terms R = X + Y + Z, it is
also possible to align all the terms compared to the one with the highest magnitude.
However, it is not possible to use sticky bits in order to obtain a correctly rounded
result with an adder small than the full precision.

The use of relative alignment and sticky bits may lead to two problems (Fig. 6.4).

The first one, cancellation (Fig. 6.4a), is the most devastating to the accuracy
of the result. When Y = —X, the result X — X + Z is exactly Z. However, if
the magnitude of Z is much smaller than the magnitudes of X and Y, then the
relative alignment method has completely lost the significand of Z, and returns
X — X 4+ Z = 0. This extreme case is generally referred to as total cancellation.
Partial cancellation refers to when X and Y have similar most significant bits (with
opposite sign), and adding them results in the cancellation of few bits.

The second issue, multi-sticky (Fig. 6.4b) causes issues when rounding numbers.
When the magnitude of X is much larger than the magnitudes of Y and Z, the
alignment will result in both Y and Z compressed in a sticky bit. Having two sticky
bits indicating information was lost is not sufficient to round the result, as it is not
clear if Y 4+ Z would be negative, positive, or even equal to zero. The sticky bit
information is useless when aligning more than two terms, it is not necessary to
compute it.



94 CHAPTER 6. DOT PRODUCT ON LARGER PRECISIONS

Xexp = Y;,xp
Sum like integers.

Xexp = Y;:xp

Part of (shifted) Yy, 1s

added to X, and the

rest is compressed in a
"sticky bit" for rounding.

Xexp > YVexp
Xig 1s completely
compressed in
a "sticky bit".

X, sig

+ Ysig

X, sig

Xexp - Yvexp

Y;ig

X, sig

Xexp - }/exp

)/sig
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Figure 6.4: Problematic cases when using classic floating-point addition to add three

terms.
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Despite all these problems, this method is sometimes used to add multiple
floating-point numbers or products. It does not round the result correctly, as it is
sensitive to cancellations and rounding issues.

6.1.2 Dot-Product Implementations

For z = o(zg X yo + =1 X y1), the two products can simply be computed in parallel
and added as a floating-point sum of two numbers [106].

Another operator [76] implements the operation z = o(o(zg X yo + 21 X Y1) +
o(za X ya + w3 X y3)) with all intermediate roundings as one instruction. This dot
product operator also computes multiple products in parallel.

The Matrix-Multiply-Add (MMA) units of mainstream GPUs [90, 75, 59, 60,
47] use a variant of the floating-point addition architecture: All products are aligned
relative to the one with the largest magnitude then added to a floating-point accumu-
lator that can be of an arbitrary size, the popular choice being 24 bits. This method
will be referred to as the truncated floating-point accumulation.

6.1.3 Existing Kalray Dot Product Architecture

In the FP16 mixed-precision FMA operator of [7], an FP16 product A x B is first
exactly converted to a fixed-point number, which is then added with correct rounding
to an FP32 addend Z. The fixed-point format that contains all FP16 values has
a Most Significant Bit (MSB) position of 30 and a Least Significant Bit (LSB)
position of -48, hence the total size 81 bits. The operator of [7] implements the
addition between the FP32 addend and the fixed-point product in a way that ensures a
correctly rounded result to FP32, with fewer bits than a Long Accumulator matching
the FP32 range (which would be 277 bits, from MSB 127 down to LSB -149).

The FP32 addend is first shifted relative to the FP16 accumulator. The size of the
shifted addend is about 130 bits: 81 + 24 + 24 since the significand can be placed
entirely on each side of the FP16 accumulator, separated with a couple guard bits.
Fig. 6.5 (not to scale) summarises the main alignment cases in this addition.

* Case 1 in Fig. 6.5 is similar to the way classic floating-point addition is
computed. The FP32 addend is shifted relative to the FP16 accumulator and
shifted into a sticky bit if needed (Case 1°).

* In Case 2 of Fig. 6.5, the FP32 addend has a larger exponent than the MSB
of the fixed-point FP16 product. The result of the multiply-add is the FP32
addend, possibly modified only with a rounding contribution from the fixed-
point product. The alignment of the FP32 addend is limited to its LSB being
one bit larger than the MSB of the FP16 product. As the guard bit stays clear,
this allows for a correctly rounded sum.

The two numbers are added, and the FP32 exponent is used as the reference exponent
for the result.
The Leading Zero Count (LZC) of the sum (the lower lines of Fig. 6.5) is

computed, and then there are three cases to consider to determine the output exponent:
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Case 1 : FP32 exponent is similar to or smaller than fixed-point MSB
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Figure 6.5: Addition of an FP32 number to a fixed-point (30, -48) number [7].

+ | FP32
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* In case 1, the exponent of the result is 30 + 25 — LZC + FP32bias, where
30 + 25 corresponds to the (unbiased) weight of the MSB of the sum.

* In case 1°, when the FP16 product is O (which can be determined from the
LZC), the FP32 addend which has been rounded off in the alignment must be
restored by wiring it from the input to the output without modification.

* If the exponent of the FP32 addend is larger than 30 + 25 + FP32bias, it is
used as the result exponent (Case 2).

In the first and last cases, the significand is the normalised and rounded result of the
sum.

The minimum exponent of an FP16 product (-48) is within the range of normal
FP32 numbers. The only way this operator can produce a subnormal result is if the
FP16 accumulator is 0 and the FP32 addend Z is subnormal, so it is wired unchanged
to the output (second case). Thus, there is no need for the rounding logic to handle
subnormal outputs.

This method can be extended to a DPgpicA operator, as the sum of several fixed-
point FP16 products is still a fixed-point number. The fixed-point format must
be extended with a few bits to absorb possible overflows. This DPgp;cA operator
architecture was described in [8].

A similar architecture is described in [88] where the sum with the FP32 is adapted
to include a scaling factor to the multiplicands.

6.2 Double-Word Arithmetic in Accelerators

6.2.1 Double-Word Floating-Point Arithmetic

A double-word number [23] X is defined as the unevaluated sum of two floating-
point numbers X" and X' such that X = X" + X! and X" = o(X) using round to
nearest. Thus X' represents the signed rounding error of X: X! = X — o(X).

The exact result of floating-point additions or multiplications can be represented
as a double word, which is useful for error-free transforms [96]. Hardware operators
that input two floating-point numbers and output the exact sum or product as a double
word have been studied in [32].

In a binary floating-point format with p bits for the fraction, the significand has
p + 1 bits thanks to the implicit bit. Interestingly, a double-word decomposition can
always represent at least 2p + 3 consecutive bits: p + 1 bits for X", p + 1 bits for
X', and an extra bit encoded in the sign of X' as follows:

» If X was a midpoint between two exact floating-point values, then only p + 2
bits are needed to represent its significand.

* Otherwise, X' is strictly smaller than the half-ulp [96] of X, therefore there is
a gap of at least 1 bit between X" and X'
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Figure 6.6: FP16 dot product of size 16 R = Z + > X; x Y; (top), used as an FP32
dot product of size 4 (bottom).

6.2.2 Double-FP16 for Linear Algebra

This technique [46] can be used for dot products operations (Fig. 6.6).

To accelerate an FP32 matrix multiplication C' = AB using an FP16 MMA unit,
A and B are decomposed as the unevaluated sum of FP16 matrices A ~ A" + A!
and B ~ B" + B!. A mixed-precision MMA then computes an approximation of
the FP32 matrix C as C' ~ A"B" 4 A"B! + A'B" + A!'B!. The decomposition of
an FP32 matrix A into FP16 matrices A", Al is obtained by [90]:

A" = toFP16(A) |
Al = toFP16(A — toFP32(A")) . (6.1)

The toFP16() operation converts each FP32 element to FP16. Likewise, toFP32()
converts each FP16 element to FP32.
This approach has several drawbacks:

1. The dynamic range of the FP16 representation leads to extreme precision losses
for large FP32 values [90], since the 8-bit exponent of the FP32 representation
is larger than the 5-bit exponent of the FP16 representation. In other words,
(6.1) often over/underflows.

2. Even when the FP32 multiplicands fit in the dynamic range of the FP16 format,
there is still a loss of precision as the number of bits in two FP16 significands
(2 x (10 + 1)) is strictly less than in an FP32 significand (23 + 1). In other
words, (6.1) is usually inexact.

3. On GPUs, an additional loss of precision arises from the addition of sub-
product matrices A"B", A"B!, A'B" A'B'in FP32 arithmetic, which in the
case of NVIDIA Tensor Cores only supports round to zero [90].

4. The explicit decomposition of the FP32 multiplicand matrices A, B into the
FP16 matrices (A", A', B"  B!) increases the complexity of application soft-
ware.

A solution to issues 1 and 2 is to use triple-BF16 [58], but it makes issues 3 and
4 worse. The motivation of the present work is to address all these drawbacks in
hardware.



6.3. INTERMEDIATE FLOATING-POINT FORMAT 99

6.2.3 The TF32 format of NVIDIA Tensor Cores

Tensor Cores in NVIDIA GPGPUs are mixed-precision fused MMA units [90].
They multiply matrices with FP16 elements and add the products to a matrix with
FP32 elements. Since the NVIDIA Ampere architecture, they also support other
multiplicand formats, including BF16 and TF32 [120], a combination of FP16 and
BF16 formats (Fig. 6.7).

S E F

|
FP32 [ ] |
BF16 [ ] |
FP16 (] | |

TF32 [] | |
Figure 6.7: Floating-point formats supported by NVIDIA Tensor Cores [120].

Although designed to accelerate deep learning kernels, Tensor Cores are also
used in numerical analysis to improve the performance of matrix multiplications in
FP32 arithmetic. One approach is to rely on iterative refinement techniques [56],
while others adapt multi-word arithmetic techniques. In this setting, the TF32
format is appealing because it has the same exponent size as the FP32 format. This
alleviates the dynamic range problem of double-FP16 decompositions of FP32
numbers. However, the limited accuracy of double-FP16 decompositions remains
with double-TF32 decompositions.

6.3 Intermediate Floating-Point Format

This chapter presents the architecture of a fused Dot Product Add (DPA) operator
that targets both the mixed-precision operations used by machine learning and
the FP32 linear operations used in numerical computing. The main enabler is
the definition of an intermediate floating-point format called E9S12 (9 exponent
bits, 12 significand bits), which is used inside the operators to represent not only
FP16 or BF16 multiplicands, but also an exact double-word decomposition of FP32
multiplicands.

On the implementation side, the starting point is a correctly rounded fused DPA
operator with FP16 multiplicands and FP32 addend (see Sec. 6.1.3). This operator is
extended to support E9S12 multiplicands, as this also enables the use of BF16 and
FP32 multiplicands. The FP32 multiplicands are decomposed in hardware as double-
E9S12. The resulting operator is still correctly rounded for FP16 multiplicands, and
is IEEE compliant when emulating an FP32 Fused Multiply Add (FMA) operator.
The proposed operator is not only faster, but also more accurate than software
solutions based on decompositions of FP32 multiplicands into pairs of FP16 or BF16
numbers.
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Specifically, for an integer N, let (X;)icjoan—1]> (Yi)icjo,an—1] be FP16 numbers,
Z and R be FP32 numbers. The proposed DPA operator computes the sum of a dot
product of X;, Y; and the addend Z with a single rounding o:

R:O(XQX%+...+X4N_1XYZLN_l—FZ)

This requires an internal accumulator of 81 bits (see Sec. 6.4.2). If the inputs
(Xi)icjo,an—1]» (Yi)ico,an—1) are BF16 numbers, the same precision is used to com-
pute their dot product. This process and the corresponding truncation is noted ¢. The
DPA operator then computes

R = O(d)(XO X Yo+ ...+ Xuyny_q X Y4N_1) +Z)

Finally, the same DPA operator may compute, for FP32 numbers (U;);cjo,n—1]»
(Vi)ieo,N—1)s

R:O((D(U()X VE)‘F'--UN—I XVN_1)+Z)

This operator provides the building block of a large pipelined MMA accelerator, the
details of which are beyond the scope of this work.

In order to operate on FP16, BF16 and double-word decompositions of FP32
multiplicands, the intermediate format E9S12 is defined to represent all of them and
be suitable for implementation of the downstream calculations. This intermediate
format is operational, and thus does not need to be frugal in bits, unlike a storage
format. In particular, it does not need to be normalised. Moreover, conversion to this
format should be easy to implement in hardware.

6.3.1 FP16 and BF16 Multiplicands

The generic Unpack(wg, wr) subcomponent (see Sec. 5.1.1) unpacks an input X in
Xsign; Xexpy Xsig; Xﬂags-

Unpacking an FP16 number requires an Unpack(5, 10), outputting 5 exponent
bits and 11 significand bits. Unpacking a BF16 number requires an Unpack(8, 7),
outputting 8 exponent bits and 8 significand bits. Therefore, an unpacked format
supporting both FP16 and BF16 numbers requires 1 sign bit, 8 exponent bits, 11
significand bits, and 5 bits for Xgq,gs.

6.3.2 Decomposing FP32 Multiplicands

Using a hardware-friendly approach, the idea of double-word arithmetic can be
adapted to reuse an FP16 / BF16 data path to compute an FP32 dot product.

An FP32 number U is decomposed into an unevaluated sum of U” and U', that
is, U = U" 4 U'!. The key to making this decomposition hardware-friendly is to
adapt the intermediate floating-point format to represent U” and U’ (Fig. 6.8). Since
an FP32 number has a significand of 24 bits, it should be split into two significands
of 12 bits. There is no need for the rounding trick of Section 6.2.1 that requires
U" = o(U). Instead, it is possible to just split the mantissa Uy, into its 12 most

significant bits that become US’}g, and its 12 least significant bits which become Uslig
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Figure 6.8: Unpacking an FP32 number into two E9S12.

(Fig. 6.8). Since the significands in the intermediate format may be not normalised,
it is not necessary either to normalise Uslig if its leading bit is 0. The signs of U" and
U are the same (Fig. 6.8).

The exponent of U, Uéxp is the exponent of U minus the constant 12, which is
simple to implement. To ensure that 0 encodes the smallest possible exponent, the
intermediate format uses an encoding with an exponent bias of 139 = 127 + 12.
Without this bias, negative exponents UelXp = Uep — 12 would appear during the
decomposition of subnormal FP32 numbers and those with exponent Uy, < 12.

Using the bias of 139, the hardware sets Ul, | = Ueyp and UJ;, = Ueyp + 12. If the
input U is subnormal, then UelXp = 0 and Uef;p = 12. This bias change is compensated
later in the operator when computing the final exponent. However, it requires one
additional exponent bit in the intermediate format, hence the 9 in E9S12.

Special care is needed when dealing with this non-normalised, non-standard
format. For example, U' can be zero with a non-zero exponent. In general, this ap-
proach is simpler and more energy efficient than implementing (6.1) which enforces

Uh =o(U).

6.3.3 The Common Intermediate Format

The intermediate floating-point format that captures all these multiplicands is called
E9S12 in this work. It is encoded using 27 bits: 1 sign bit, 9 exponent bits, 12 bits for
the significand and the 5 flag bits. In other words, the format needed to decompose
the FP32 numbers is also large enough for the unpacking of the FP16 and BF16
numbers as well.
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Figure 6.9: Converting an FP16 or a BF16 into E9S12.
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Figure 6.10: Unpacking an FP16, a BF16 or an FP32 number into E9S12.
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As shown in Fig. 6.10, the outputs of the BF16 Unpack(8,7) and the FP16
Unpack(5, 10) are converted to the E9S12 format by trivial zero extension of the
significand and update of exponent bias.

6.3.4 Intermediate Format Applications

The simplest application of E9S12 is to implement an FP32 Multi-Addition (MA)
operator. Each FP32 input U is decomposed into U" + U, each in E9S12 format.
The MA2N operator for E9S12 can be used as a MAN operator for FP32:

R=o(U}+ Ui+ ...+ Uly_1y + Un_1)
=o(Up+...+Un_1)

When unpacking the inputs for the Multi-Addition, each FP32 input is decomposed
into two E9S12.

However, the main application of E9S12 is to implement a DPA operator with
FP16, BF16 or FP32 multiplicands, FP32 addend and FP32 result. In case of FP16 or
BF16, each 16-bit multiplicand X, Y; is unpacked into the E9S12 format (Fig. 6.10),
and the DP4 N A operator computes:

In case of FP32 multiplicands U (resp. V') is decomposed (Fig. 6.8) into U}, and

U; in E9S12 format such that U = Uy, + U; (resp. V =V}, + V}). The product U x V'
18 rewritten as:

UxV=U"+VHx(U"+VH
=U"x V' UM x VI U x V4 U x V

The DP4NA for E9S12 multiplicands can then be used as a DPNA for FP32
multiplicands:

N-1
R=0o(Z+ Y (U< V" +U!x V! + Ul x V" + U x V)
=0
:O(Z+U0 XxVo+ ...+ Un_1 X VN—l)
The unpack circuit for this operator is computed in blocks of 4 16-bit inputs. A

block is shown in Fig. 6.10 for X. In the corresponding block for Y, the outputs Y/
and Y, are switched compared to this figure.

6.4 Dot-Product-Add Operators

The dot product operators in this section follow the high-level architecture of Fig-
ure 6.2. This section will detail the subcomponent FPY..
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6.4.1 Baseline FP16 Dot Product Add Operator

This operator (Fig. 6.11) deals with the multiplicands in a very similar way to the
architectures described in Chapter 5. An exact multi-addition of 81-bit numbers
allows for correct rounding, reusing the techniques of [8] (see Sec. 6.1.3)

In the subcomponent FPY., the products Pk, ; are shifted by their exponent Py, ;
to obtain their fixed-point value. The sum of these fixed-point products is computed
exactly by a fixed-point multi-adder.

The sum also includes the contribution of the FP32 addend Z, which after un-
packing has a different format than the products. The relative shift of the fixed-point
sums of products and the FP32 addend follows the principles of Section 6.1.3 [7].
Consequently, the conversion from the exact fixed-point sum to FP32 ensures a
correctly rounded result.

chp.() PsigA,O Pe/\pﬁNfl Psig.Nfl Zexp Zaig
Shift Shift
Left Left
Compute
Shift Value
> |_> Shift
Right

130 + logy (N + 1)
130 4 logy (N + 1)

Leading
Zero Count

Compute
Normalisation Exponent
Shift
Left

Figure 6.11: Architecture of a correctly-rounded FP16 Dot Product Add operator.

6.4.2 Dot Product Add Operator with E9S12 Multiplicands

The E9S12 format has a notably larger dynamic range than FP16, which would
involve shifting and accumulating fixed-point numbers over 540 bits (MSB 254 and
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LSB -298). This makes the full-precision fixed-point accumulation impractical, so it
is replaced by a truncated floating-point method described in Fig. 6.12.

Architecture overview The products are aligned to the product with the largest
exponent F... The accumulator is reduced to an arbitrary size L, but it is now
needed to store its exponent K.

To avoid loss of precision in the case of partial cancellation, the sum size should
be at least twice the size of the significand of the result (48 bits for FP32). The sum
size was chosen to enable the computation of a correctly rounded FP16 Dot Prod-
uct Add: L = 81 + [log,(N + 1)] bits. This has proven to be useful for formats
with a small dynamic range [88]. Additionally, this larger accumulator results in
additional precision for BF16 and FP32 compared to mainstream GPUs.

The handling of the FP32 addend is similar to a floating-point adder: The sum of
products is indeed a floating-point number (possibly non-normalised) of exponent
Eacc and of significand size L. However, contrary to a classic FP adder, the proposed
architecture always shifts the FP32 significand, since it is much smaller than L. This
is actually similar to the addition performed in the baseline operator [7], with the
notable difference that the shift amount of the addend Z is not computed from a
constant (MSB 30 of the accumulator), but from the exponent Fa..

Finally, a Leading Zero Count and a Shift are performed to normalise the sum
and prepare it for the final rounding.

Overhead over the baseline FP16 DPA  Compared to the baseline implementation,
the size of the multipliers increases to 12 x 12 to support E9S12. The accumulation
size of L = 81 is kept to continue to allow for exact FP16 calculations, which
implies that the alignment shifters and adder trees are the same size as in the baseline
operator.

Enax must be computed with a comparator tree, it can be done in parallel with the
multiplication of significands. As the significands are aligned with Ep,,, it is simpler
to use a right shifter instead of the previously used left shifter. The significand
product P, ; is shifted by Eyax — Pexp.i-

Subnormal handling As discussed in Section 6.1.3, the baseline FP16 operator
does not need subnormal output logic, as the range for the FP16 product is much
smaller than the range for the FP32 result.

However, with the E9S12 format, it becomes possible to create a subnormal
output from normal inputs. Denormalisation logic is added to the operator, where the
final shift computation takes into account the Leading Zero Count and Exponent. The
shift performs an incomplete normalisation of the accumulator so that the significand
is correctly aligned for the rounding.

Zero detection When splitting an FP32 number into two E9S12 numbers, it is
important to independently detect if the two separate parts are zero. Although most
flags are duplicated (i.e. X = +00 — X" = +00A X! = +00), accurately detecting
zeros helps catching bugs in the rest of the operator. The case X! = 0, X # 0 can
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Figure 6.12: Dot product operator for E9S12.
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happen when the fraction of X is empty on the lower half. The case X" = 0, X # 0
can happen when X is a small subnormal.

6.4.3 Support of the FP32 Fused-Multiply Add

A dot product operator in the E9S12 format
R=o(¢(Xygx Yy +... XNy 1 XY 1)+ 2)

as described in the previous section can be used to emulate a correctly rounded FP32
Fused Multiply-Add (FMA) operation.

If all FP32 products except one Uy, x V}, are zero, the result is correctly rounded.
Indeed, the product is split into four terms Uy, X Vj, = U} x V" + Ul x V! + U} x
Vb 4+ Ul x V}! but those terms have a maximum exponent difference of 24. Since
the size of each term is also 24, the four products can be exactly represented on 48
bits (the size of the FP32 significand multiplication). Therefore, as soon as L > 48,
no information is lost in the sum, and the product U}, x V}, is exact. Implementing
the method of [7] then ensures the correct rounding of the addition of Z.

6.4.4 Alternative Architecture with Internal 7/

LLMs as well as scientific computing require dot products of much larger sizes than
16. When the DPA operator is used to emulate a larger dot product operator with an
arbitrary size D, an alternative architecture, depicted in Fig. 6.13, can be used where
the addend is not exposed to the user. It is replaced with an accumulator that can
only be reset to 0. This accumulator is here considered as a product; for instance,
its exponent can be chosen as the maximum exponent. In this architecture, the final
normalisation shift and round components are only used when the D products have
been added, to round the result into an FP32 number.

Compared to an FP32 addend, this approach increases accuracy for large dot
products: the whole accumulator of 81+log, (V) bits loops back into the computation
instead of the 24 bits of precision of an FP32 addend.

An FP32 number can still be added by first splitting it as two E9S12 and inputting
as a product with 1. This is trivial in a single dot product, and takes multiple
operations in a matrix multiply add operator to initialise every addend independently.
This also does not always provide the correctly rounded sum of an FP32 and an
FP16 dot product (consider the case where this FP32 has a very large or very small
exponent compared to the accumulator exponent, leading to bits being lost in the
shift). For the same reason, this alternative architecture cannot emulate the FP32
FMA.

In short, this variant is a trade-off, as it improves the overall accuracy over many
iterations but loses precision over one unique computation. The lack of correct
rounding also reduces predictability in distributed systems and software simulation.

This accumulator is in a floating-point format, with an exponent and a fixed-point
significand, normalised to avoid precision loss if the accumulator has the largest
exponent. This also helps with regularity of the operator’s behaviour.
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Figure 6.13: Dot product operator for E9S12, with loop on the accumulator.
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To avoid unnecessary logic dealing with the sign, the number is normalised in
two’s complement representation, which can be a problem for negative powers of
two. For example, 2 is encoded as 00105 in binary on 4 bits, and —2 as 1110,. In
the positive case, the normaliser returns C' = 2, R = 10005, and in the negative case
C = 3, R = 0000,. This is actually not an issue when concatenating with the sign
bit after normalising. In the positive case, R x 27¢ = 01000, x 272 = 24 x 272 = 2,
and in the negative case, R x 27¢ = 100005 x 273 = —2° x 273 = —2.

6.5 Experimental Results

6.5.1 Operator Validation

This operator was implemented within the FloPoCo framework [35], which includes
MPFR-powered test bench generation. When the operator takes FP16 multiplicands,
a correctly rounded result is expected. With BF16 and FP32 multiplicands, the test
case is accepted when the result is a faithful rounding of the exact result computed in
MPEFR, and rejected otherwise. When rejected, the case is checked by hand to verify
that it is not a bug but a normal behaviour of the operator.

For every input mode, the FMA is expected to be correctly rounded: if the
number of non-zero product is 1 or less, the test bench expects a correctly rounded
result.

The FloPoCo framework encourages the definition of standard test cases. Here,
these include the tests of negative zeros and subnormals, as well as debug tests for
development purposes. It also allows for directed random tests, where the random
number generator is biased towards increasing the probability of some rare but
important situations. Here, directed random tests enable the verification of the FMA
mode, forcing all products but one to be zero. The probability of cancellation cases
(where products can have very close exponents and different signs) is also increased.
Finally, directed random tests are also used to increase the frequency of subnormal
inputs and outputs, as this is often an error-prone part of the operators.

6.5.2 Synthesis Results

This section compares DPA operators of size 16 for FP16 and BF16, and thus of
size 4 for FP32 multiplicands. The actual pipelining of the chosen operator will be
highly dependent of its integration in the larger context of a MMA unit. For this
reason, we prefer to compare combinatorial operators, which are synthesised for one
clock cycle at 333MHz to allow for later pipelining in 3 clock cycles at 1GHz. The
operators have been synthesised with the Synopsys Design Compiler NXT for the
TSMC 4FFC node.

Here, DP16gpi6.8ri64rp32A 1s the combined FP16, BF16 and FP32 operator based
on the E9S12 format. It is compared to an alternative with two separate operators:
DP16gpi6.8ri16A, a combined FP16 and BF16 dot product operator dedicated to 16-
bit operands, and FDMDAA4, a correctly rounded FP32 dot product operator with
subnormal support which will be described in Chapter 7. The results of the synthesis
are shown in Table 6.1.
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Operator Area Power

Leakage | Total
(m® | @W) | mW)

DP16gpi6A [8] 1796 477 1.83
DP16gpi6.BricA 2343 602 2.11

FDMDA4 (Chap. 7) 1865 476 1.87
FDMDA4 (Chap. 7) & DP16gp16.sri6A | 4208 1078 2.11
DP16gpi6.Bri6drp3A 2504 657 2.62
Alternative DP16FP16—BF164FP32A 1949 531 2.23

Table 6.1: Synthesis results for the various operators configurations.

The combined operator has a significantly smaller area compared to having
two operators DP16gp 6 gri6A and FDMDAA4 (-40%), and this is correlated with the
leakage power (-39%). However, total power consumption increases (+24%) as the
operator is less specialised.

The alternate architecture is cheaper that the other architectures mainly because
it does not require the accumulator size (81 + log,(D) = 97) to be as big as the
accumulator size in the other operators (130 + log,(17) = 136).

6.6 Integration into Kalray products

The operator designed for Kalray is based on the alternate architecture presented in
Section 6.4.4 It is pipelined with a latency of 5 cycles (Fig. 6.14).

Xy Y, o XYoo
f’]oop €mEmmEEEEEEEEEE "
Eloop CGemmmmm==- -
Flags <--- | *
Stage 1 Mult. and shift ; ; :
Stage 2 Bit heap compression
Stage 3 Final add bl
Stage 4 Normalise
Stage5 | Convert to FP32 \ I Flags ----¢ !
I Eloop"""""""‘I :
loop ®"e==mmEEEEEEEEE"= '

ROllt

Figure 6.14: Pipeline stages of the dot product operator designed for Kalray.

The registers storing Fiyop, Fioop and Flags for this operator are shared with the
ones storing Ry and Flags for the FP8 operator (see Sec. 5.4).
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While the latency between the input and the output of the looping accumulator
is on 3 cycles, the overall scheme in the MMA context (see Sec. 3.2) reuses the
accumulator after 8 cycles.

6.7 Conclusions: The Cost of Accuracy

This work is motivated by the extension of a Matrix Multiply Add (MMA) unit,
originally designed for deep learning applications, for use in FP32 numerical appli-
cations. The building block for this MMA unit is a Dot Product Add (DPA) operator
with FP16, BF16 or FP32 multiplicands, an FP32 addend and an FP32 result.

The proposed DPA operator performs a dot product between vectors of 4N
16-bit floating-point elements or N FP32 elements. This operator accepts FP32
multiplicands by decomposing each of them into a pair of numbers represented in a
suitably designed internal format, consisting of 12 bits of significand and 9 bits of
exponent.

In these architectures, the size of the accumulator greatly correlate with the area
of the operator, as well as with the accuracy of the performed computation.

In the previous Chapter (Chap. 5), the size of the accumulator was chosen to
accommodate the whole fixed-point representation of the various FP8 formats. In
this chapter, the size is such that the result is correctly rounded for FP16 operands.

Adding BF16 support fundamentally changed the structure of the operator from
a full-precision fixed-point accumulator scheme, to a truncated floating-point sum.
This added logic for the computation of the maximum exponent, as well as a shifter
on the input of the accumulator, and the fact that the normaliser is in the loop and
not outside.

For the same accuracy and accumulator size, the second architecture is more
expensive and has a larger latency that the first one.

Operator Latency Area Dynamic power Leakage power
(ms)  (um?) (mW) W)

Combined FP8 (N = 32)

full-precision fixed-point 4 1413 4.7 431
FP16 (N = 16)
full-precision fixed-point 4 1562 5.7 530
FP16-BF16-FP32 (N = 16) s 2451 . -

truncated floating-point

Table 6.2: Synthesis of pipelined operators for 4 nm technology at 1.56 GHz.

When computing with a full-precision fixed-point accumulator, one must take into
account extra bits used to absorb the carries during a chain of multiple computations.
For the Kalray operator, the value 16 was chosen, to be able to accumulate ~ 64000
products exactly without worrying about accumulator overflow.

It is not necessary to add as many bits when using a truncated floating-point sum
architecture, as the accumulator has an exponent. The size of the accumulator can
thus be much smaller.
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Figure 6.15: Synthesis results of dot product operators depending on the accumulator
size, pseudo-pipelined for a latency of 5 ns or 200 MHz on 4 nm technology node.
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Figure 6.15 shows the area of the truncated floating-point operators depending
on the accumulator size. The operators are pseudo-pipelined: the synthesis is set
at a latency of 5ns, which is a frequency of 200 MHz, chosen as all the designs
comfortably fit into the latency. Full-precision fixed-point designs are generally
faster as they do not require to computed the maximum exponent.

Not including pipelining does not result in an exactly fair comparison, as registers
are very expensive, however it can give an idea of the cost when choosing to
implement or not a correctly rounded design.

Figure 6.15 also shows the area of a full-precision fixed-point E9S12 operator,
which has the same size multipliers than the FP16-BF16-FP32 operator. It also
shows the area of a full-precision fixed-point FP16 operator, which is a less fair
comparison (as the multipliers are 1 bit smaller) but still interesting to see the cost of
the floating-point alignment logic when the accumulator are about the same size.

A popular choice for the accumulator size is 24 as that is the precision of the FP32
output. Synthesis show that this architecture with critically degraded precision is
about as expensive as FP16 full-precision fixed-point architecture. This consolidates
that it was the right choice to use a fixed-point architecture for FPS8, and it would
also be the case for an FP16 only operator.

The truncated floating-point method also largely degrades the accuracy, which is
not acceptable for small input floating-point formats like FP8 and FP16 where every
significant bit counts.
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The point made in Chapter 5 still stands: a full-precision fixed-point accumulation
in practice consists in mostly adding zeros. The larger the exponent range, the lower
the ratio of non-zero bits added over zero bits.

In Chapter 6, the size of the accumulator was reduced by truncating all the
bits that were too small compared to the exponent of the largest magnitude. This
method does not guarantee correct rounding, in fact it does not even protects against
cancellations.

The architecture presented in this chapter starts from the same situation, but
instead tries to compress the zeros without sacrificing significant bits.

7.1 Introduction
This work addresses the correctly rounded dot-product-and-add:
R:O(X() X)/()—I-...—f-XN_l XYN—1+Z)

Here (X;)icpo,n—1]» (Yi)icjo,v—1), Z and R are floating-point numbers in a representa-
tion with a wide dynamic range such as FP64, FP32 and BF16. The multiplicands
Xiego:n—1} and Yieqo,n—1y have w,;, exponent bits and wy ;, significand bits. The
output /? and the addend Z have a possibly wider format with w, oy and wjy oy
bits. The corresponding operator is called FDPN A, possibly suffixed with the for-
mat, for example FDPN Agps;, for homogeneous operators and FDPN Aggy¢_,rp32 for
mixed-precision ones.

7.1.1 Motivations

FP64 | |

g‘) Linear algebra

5 FP3R2| .

S 6| I ML :

£ o

>

2 FP8| |y :

| | | | | | | |

0 2 4 6 8 10 12 14 16

N

Figure 7.1: Applications of various instances of the FDP/N A operators (BF16 has
the same dynamic range as FP32).

The main applications of FDPN A operators are accumulations of partial dot
products in machine learning and linear algebra applications (Fig. 7.1). In addition,
the operator where N = 2, also called FDMDA (Fused Dual Multiply Dual Add)
or ExSdotp [4] effectively supports complex floating-point arithmetic, as a complex
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fused multiply and add R = XY + Z is implemented with the best possible accuracy
in only two operations: Noting j2 = —1,

o . . Rre = O(XreK'e - XimY;In + Zre)
R = Rre + ]le with { Rim — O(Xre)/im + XimY;e —+ Zi )

7.1.2 Related Work and Previous Implementations

Various dot-product-and-add implementations are described in Chapter 6.

However, many of those implementations are not correctly rounded, except [116,
8, 4].

The ExSdotp fused dot-product-and-add operator of [4] first sorts the three
terms based on their exponents, the exponent of each product being the sums of the
multiplicand exponents. The two larger terms are added, and if a full cancellation is
detected, the smaller term is restored for the result. This works for the sum of three
floating-point numbers. However, with products involving subnormal multiplicands,
this approach may result in incorrect results with directed rounding. For example,
consider ExSdotp FP16—FP32 with rounding up; Xg = Yy = X; = 1; Y] a
small positive FP16 subnormal; Z a FP32 such that Z7 = —2X;Y;. Obviously
XoYo + X0Y1 + 272 =1 - XY, < 1, therefore, R should be 1. However, the
exponent of X;Y7 is larger than that of Z due to Y; being subnormal. Therefore the
sort, based on the exponents only, will use XY} for the addition instead of Z, and
the result returned will be R = 1 + 2723, This issue also also affects the inexact flag
in round to nearest.

Operators described in Chapter 5 use full-size fixed-point accumulation guarantee
the correct rounding of the result. The alternative studied here is to compress identical
bits inside the full-size accumulator. It builds on Tao et al. [116], with multiple
improvements: adding subnormal support, managing the addend Z, and mixed-
precision. Alternative techniques are explored for several sub-problems, including
sorting networks and a parallel-prefix computation of the significand shifts.

7.2 Operating Principles

7.2.1 Architecture Overview

The operators in this chapter use the same high-level architecture as the previous
chapter (Fig. 7.2).

The component denoted FPY. aligns the significands and sums the N + 1 floating-
point terms. Following the summation, a Leading Zero Count (LZC) retrieves the
exponent of the result. Finally, the sum is normalised or subnormalised, rounded,
and output as a floating-point number. Overflow, underflow, NaN and IEEE 754
flags are managed within FPY as well.

The FPX. component can be implemented like described in Chapter 5, using a
full-precision fixed-point accumulation. The size of the fixed-point format w,, is
summarised in Table 5.1 (p. 80). Extra bits extend the fixed-point format on the left
to guard against possible overflows: wg, = w, + [logy(N + 1)].
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Figure 7.2: High-level architecture of the FDPN A operator.

This approach is quite efficient for formats with small full-size accumulators. It
has been used in particular for the exact sequential accumulation of FP16 products [7]
and a FDP8Agp6_.rp3» Operator [8]. In the mixed-precision case, it is better to
perform the sum of products separately in an accumulator corresponding to the small
format, then perform the last addition of Z as in a classical FMA. As the sum of
products is exact, it is associative and can be parallelised without any consideration
of the exponent values.

MSB — EO -MO

+ - MSB — By — M,
+

MSB — Eg == M

Wrull

Figure 7.3: Example of alignment for the sum using a full-precision fixed-point
accumulation.

7.2.2 Compressed FPY. Principles

When (as is the case in Fig. 7.3) the accumulator size is much larger than the sum
of the widths of the NV + 1 significand terms to add, one observes that most of the
summation adds zeros (or sign bits, which are similarly easy to manage). Intuitively,
these parts of the summation can be saved, and the worst-case size of actual addition
needed should be roughly /N times the size of a term significand. In this chapter,
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compression refers top the suppression of the columns of predictably identical bits
in Fig. 7.3. It is called realignment in [116].

The core idea is to use a single fixed-point multi-operand adder of size Weompressed <
wry- The shift values needed to align the P, ; before their summation are no longer
trivially deduced from the P, ; as in the full-size case: they now need a more com-
plex computation to skip the compressed bits. The main issue is the combinatorial
explosion of the alignment situations, because it has to be implemented in hardware.

To address this explosion, the terms a first sorted by their exponent P, ;. Sec-
tion 7.4.1 discusses our approach for this. Let (Eg, M), (Ef, M{),...(E%, M5 ) be
the renumbered (exponent, significand) pairs such that & > Ef > ... > E%. The
sorting approach requires that the products X;Y; and the addend Z be represented in
the same way. The significand size w that fits all is the maximum width of Z, and
all Psig,i:

w = max(2 + Moy, 2(1 + myy))

As illustrated in Fig. 7.4, the significand Z;, of the addend Z is extended with
an extra MSB corresponding to the overflow bit of a product. In the homogeneous
case, Z, 1s extended with extra LSBs. In the mixed-precision case Zg;, usually also
has more precision to the right than the other P, ;, for example 22 bits for BF16
products versus 24 bits for FP32. In the sequel, all P, ; are considered to have the
same size w. The exponent Z.,, of Z must be similarly updated.

Homogeneous case Mixed-precision case
P P
P S E— L4
Z Z
L @

Figure 7.4: Common format for the significands of products and addend.

Accordingly, the architecture proposed is sketched in Fig. 7.5. The (exponent,
significand) pairs are first sorted by their exponent, then processed by a component
that determines the adjusted shift values S;. The sorted significands are then shifted
before being summed into an adder tree. The sum RMjy, is converted back to
a (sign,magnitude) representation, normalised, then rounded to produce the final
significand.

Compared to the full-size FP, this architecture involves one fewer shift since
N — 1 terms are shifter with respect to the term with the largest magnitude which is
not shifted. If Weompressea < Wrunn the shifts are smaller, as are the adder tree and the
LZC. However it also requires a sorting component, more exponent pre-processing,
and some exponent post-processing as well. This trade-off is evaluated quantitatively
in Section 7.5.

7.2.3 Introductory Considerations

What is the smallest number of bits Weompressea SUCh that all the NV + 1 terms can
be added using integer adders of size at moOSt Weompressed and the exact sum can be
recovered for rounding as if it were computed on wy,y bits? To address this question
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Figure 7.5: Architecture of the compressed FPY component.
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while introducing notions needed in the sequel, first consider the trivial case N =1
then the simple case N = 2.

Two Terms (N = 1)

Case 1: Wiyl
Mg
Mg
+ M7
Weompressed
Case 2:
My
+ \Ml*\/
Mg
+ My

Figure 7.6: Compressing the exact addition of two terms.

Fig. 7.6 shows a fixed-point addition of two terms. There are two coloured zones
in this figure (from left to right: blue and red). There are two cases: (case 1) the two
significands are far apart, and the bits between them can be omitted, as the result
will be M or one of its immediate FP neighbours (one round bit must be kept to
the right of M(}); or (case 2) M| overlaps M}, and there will be an addition of size
at most 2w bits. In both cases the wy,; bits of the exact sum can be compressed in
2w + 2 bits. This observation is exploited in classic FP adders (see Sec. 6.1.1), but
with an additional trick: the bits in the red zone of Fig. 7.6 can be compressed into a
sticky bit and a guard bit [96] in a way that keeps enough information for a correctly
rounded addition.

Three Terms (N = 2)

There is now the possibility of a complete cancellation of the two leading terms M
and M. In such a case, the exact result is M/, therefore all the bits must be kept, so
it is incorrect to compress them into a sticky bit. This will be the case for all N > 1,
sticky bits will no longer be mentioned. Fig. 7.7 shows the four alignment cases of
fixed-point addition for three terms (N = 2).

In case 1, the three significands are fully separated and all the bits between them
can be compressed. There are three coloured zones in this figure (from left to right:
blue, red and green), and the architecture will need to remember the exponent of
each significand and associate it with the corresponding zone to emulate the full-size
accumulator. In all the sequel, zone 7 is associated with the exponent £ and a priori
contains the significand M.

In case 2, the two lower significands M and M3 overlap, which means that their
sum may overflow by one bit to the left of A/;". The red zone, in the compressed view,
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Case 1: Wryll
Mg [ ]
+ My
+ [] Lib)
Mg | ]
+ My
+ || M;
Weompressed
Case 2:
Mg [ ]
+ My
+ [ M
Mg | ]
+ My
+ M
Case 3
Mg |
+ My
+ || M;
Mg |
+ My
+ || M;
Case 4
My ] |
+ My
+ || M;
My ]
+ My
+ || M;

Figure 7.7: Compressing the exact addition of three terms
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reserves for this overflow one more bit than in Fig. 7.6 to the left of M. Besides,
there is no longer a red zone as in case 1: significand M/ belongs to the red zone:
since it must be added to M7, it inherits its exponent £}. The good news is that in
the compressed adder tree, the bits necessary to this addition may recycle those of
the red zone in case 1.

Case 3 is similar, but with M} now in the blue zone due to M overlapping M.
Note that the red zone, associated with the exponent Es, exists in this case. In such a
case I will be used to shift M to its proper place in the compressed sum, but it is
not associated with a zone.

Finally, case 4 shows the situation where only one zone is associated with £,
which happens as soon as the compressed accumulator can hold the exact sum. Here
neither £} nor E; are associated with a zone.

7.3 Construction of the Compressed FP>

This section first generalises the N = 1 and N = 2 considerations to formally
define the sizes and parameters of the NV + 1 zones of a FDPNA operator. Then
an architecture to shift all the significands to their proper place in the compressed
accumulator is defined. Determining those shift values can be implemented as a
parallel prefix computation.

7.3.1 Compressed FP>. Parameters for N Terms

In case of NV terms, the key is to determine the zones in the summation where each
significand M should be positioned if it does not overlap with other significands.
These zones are specified by their boundaries, denoted d;. Fig. 7.8 illustrates the d;
values for w = 3, incases N = 2 and N = 4.

do+po di+p

do =0 dy dy ds
| | l | |
Mg
+ LB
+ 38 M5
do + po di +p dy+ps  ds+p3
do = d3 dy  ds
| | l | |
Mg
+
+
+ | My |
+ M

Weompressed

Figure 7.8: Position of the zone delimiters in cases N = 2 and N = 4.

The number of bits between d; and d;; should at least be the width w of the
significand. An extra bit is added to the right of the significand as a placeholder
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for a round bit. Besides, p; protection bits are added to the left of the significand
(see Fig. 7.8) to absorb the worst-case overflow of the significands of lower or same
magnitude:

pi = [logy(N — )]
d() - O
di=di-1 +w+1+pi

This recurrence also defines the total size of the compressed accumulator Weompressed =
dn+1 — dy. The p; and d; parameters only depend on the value of N that is set at
design time.

7.3.2 Definition of the Shift Values S; for Three Terms
do + Po di +p1 dy + p2

Either £} — E3 is small S2 = Ef — E3

Or B} — E5 is big M3 S2 = dz + p2
Case E; — Ef is big M S1=di +p1
|
Either 7 — E3 is small M5 Sz =di +p1 + Ef - E}
Or EY — E3 is big My S2 = da + p2

Figure 7.9: Determining the shift values.

M is placed in a constant position to the left of the addition: Sy = dy + py = po.

Determining the subsequent S; involves another case analysis, illustrated in Fig. 7.9
for N = 2:

 If F7 is close to I then Sy = dy + po + E5 — £7, and

— If £ is close to £ then M is placed in the zone of M and S, =
do +po + Eg — E3

— Else M is placed in its own zone: Sy = dy + Do
 Else M7 is placed in its own zone: S; = d; + p;, and

- If Ej isclose to Ef then Sy = dy +p1 + Ef — E3
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— Else M, is placed in its own zone: Sy = dy + ps.

Specifically, £ close to E; means that M;" can be placed in the same zone as
M. Then it aligns with E7, and the bits of zone i are recycled to make space for the
addition in zone j. This leads to the following definitions for the shifts:

So =do + po
Sy =min(dy + po + E5 — EY, di + 1)
iftS; =di +p

then SQ = min(d1 +p1+ ET — E;, dg + pz)
else SQ = min(do + po + EE; — E;, d2 +p2)

7.3.3 Parallel Prefix Computation of S; for 3 terms

The recurrence defining S; may be evaluated faster by reformulating it into a form
suitable for parallel prefix computation. First, each level contains dependencies on
all the positions of the previous levels, but this is not necessary for a correct result.
Indeed, if Ej is close to B} and Ej is close to Ej then:

do +po+ Eg — Ef < di +p
= d0+p0+ES—ET+ET—E;§d1+p1+ET—E§
= d0+p0+ES—E;§d1+p1+ET—E;

The formula for S, can be rewritten as:
SQ = min(do —|—p0 —|— Eg — E;, dl —|—p1 —|— ET — E;, dg —l—pg)

Second, observe that the last argument of the min can be rewritten as ds + py =
dy + p2 + E5 — E3. This leads to:
So = min(dy + po + E§, di + p1 + Ef, da + p2 + E3) — E5. Note that all the
d; + p; + E} can be computed in parallel as soon as the order of the exponents is
known.

7.3.4 Parallel Prefix Computation of S; for /V + 1 terms

In the general case of N + 1, the first expression of the shift is very long, as each S;
depends on cases of the ¢ — 1 previous terms:

Si = min(min(d; + p; + EF — B}, j €{0,...,i—1}), d; + pi)

The parallel prefix formulas in the general cases are computed in the same way
as the case for 3 terms, resulting in the following formulas:

So = do + po

S; = i d.: R 5l QR T
o {d; +p; + Ej} = E;

ki =qif (Sz = dz + pz) else ki—l

The index k; is the index of the zone to which M belongs and is computed along
the min.

This is also a convenient form for hardware implementation using a Hillis &
Steele parallel prefix tree [61] as shown in Fig. 7.10.
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do+po By di+pi Ef  do+py B ds+ps By di+py B}

SR

min-‘s\é‘l | min-‘s\é‘l | min-‘s\é‘l | min-‘s\é‘l |

So=do+po
ko =0 ¢ ¢ ¢ ¢

S1 ki So ko Ss ks Sy ky

Figure 7.10: Example of parallel prefix computation for N = 4.
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7.3.5 Computation of Final Exponent £/

Once the summation is done, its result is converted back into a sign-magnitude
representation and then normalised. Normalisation starts with a leading zero counter
(LZC) which determines the number L of zeros before the leading bit in the (com-
pressed) sum. This L is compared to all the d; to determine the index ¢ of the zone of
the result. Then the index £; is used to retrieve the exponent . actually associated
with this zone. The result exponent verifies L — (di, + px,) = Ej;, +1 — E. Here
the +1 captures the fact that our M/ have two bits, not one, to the left of the binary
point (see Fig. 7.4)
Finally the normalised result exponent £ is computed as:

If L=d, :resultis R=0
elseif L<dy: E=E;+1—(L—(do+po))

7.3.6 Subnormal Management

Fig. 7.11 illustrates a problematic situation to avoid: due to a cancellation, the
normalised result contains bits that belong to two different zones. In the full sum
there would be more bits between them, so the resulting significand is incorrect.

This situation cannot happen because of partial cancellations with normal inputs,
as in this case the zone in which the cancellation occurs has been enlarged by fusing
in the bits from zones to the right. See Case 3 of Fig. 7.7: there are more than w
extra bits in the blue zone due to fusing in the red zone. A cancellation is either full
(then the LZC will skip the blue zone), or it cancels at most w — 1 bits and there
remains more than a significand worth in the blue zone to the right of the leading
one. This is also true if three or more significands share the same zone, as the zone
is correspondingly larger.

However, the problematic situation may occur if there is one subnormal input to
a product. Managing this properly requires specific considerations on we in, We outs
Wy in, and Wy out-

001

Figure 7.11: Result is using bits from two different zones, giving an incorrect result.

In the following paragraphs, M/ will be used to discuss the problematic situations,
since they arise when the leading 1 after sum is positioned near the next zone. In
general, those situations may happen in any zone, in case of a complete cancellation
in the leading zones.
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Homogeneous Case (wy i, = Wy oy and We jn = We out)

In this case remember that the width of the M is w = 2 + 2wy;,. If M, the
largest-magnitude term, is a product between a large normal and a subnormal, it
cannot have more than wy ;, leading zeros and the width of the zone is greater than
w = 2 + 2wy . So the problematic situation in Fig. 7.11 cannot happen.

If M 1s a product of two subnormals, then its exponent is the smallest possible,
which means that all terms are products of two subnormals, all the following zones
will be merged, and there are no problems either.

Mixed-Precision when w. i, < we o

In the worst case, the product of the two smallest non-zero subnormals has only
one bit left, and nevertheless may be larger than Z. This leads to the problematic
situation in Fig. 7.11.

FDPNABFIG%FPM Special Case

The BF16 format does not support subnormals [69]. The operator FDPN Aggj6.3, can
still support subnormals in its FP32 input Z and output /2. A subnormal Z input is
not a problem. Even if there is a product of BF16 numbers smaller than Z, the case in
Fig. 7.11 cannot happen as the result will also be subnormal. Subnormalisation of the
output is managed in all cases by the normalisation and rounding of the compressed
exact sum.

Since BF16 and FP32 share the same exponent size, it is possible to support BF16
subnormals by taking w = 32 instead of w = max(2 + 23,2(1 4+ 7)) = 25. This
modification ensures that the significand of the product of a normal by a subnormal
cannot extend to the next zone: this product has a maximum of 8 leading zeros,
therefore to ensure 24 significant bits in the zone, w must satisfy w > 24 + 8 = 32.

7.4 Implementation and Validation

7.4.1 Exponent Sorting Network

To ensure that subnormals sort bigger than 0, a bit is first appended to the LSB of
each Py, ;, equal to O iff the significand is 0. These modified exponents are the keys
in the (key, payload) pairs processed by the Sort by exponent component in Fig. 7.5.
Several variants of this component were explored and implemented in FloPoCo [35].

First, there are two options for the payloads: either directly use the significand,
or use only their index (which fits on much fewer bits). The second option makes
the sorting itself cheaper, but requires an expensive multiplexing step in order to
recover the significands from their indices. A detailed evaluation showed that sorting
by indices ends up being almost twice as expensive in terms of area. In isolation,
it would also be slower due to the extra multiplexing to recover the significands.
However, sorting by indices reduces the overall latency since the sorting can be
performed while the significand products are being computed. It is thus the option
used in the sequel.
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For the sorting algorithm itself, two alternatives were considered. The first is to
use textbook sorting networks [3]. For NV = 4 (5 terms to sort) a bitonic sort has a
depth of 5 which is optimal [49]. For 9 terms, the network from [125] has a depth of
7 which is proved optimal in [100]. For 17 terms the sort used is from [44], whose
depth of 10 is optimal.

The second alternative is from by Tao et al. [116]. To sort n = N + 1 terms, it
first performs n(n — 1) /2 parallel key comparisons. The resulting comparison bits or
their complement are input to n counters (population count) that compute in parallel
the rank of each key. Finally a n x n crossbar completes the sort. This technique
obviously has a lower latency than a sorting network. In our experiments, even its
area is competitive with sorting networks at least for the values of NV considered
here, all the more as only the final crossbar moves payloads. This sorting technique
is therefore used in the sequel.

The sequential shift computation of [116] is able to recycle the values £ —
E%,Vi > j computed in the sort for their sign bit. This saves area in a non-trivial
way: it increases the number of multiplexers used at the end of the sort, but reduces
the number of adders and saves their latency. The parallel prefix computation of shift
values does not allow to use the same recycling trick. However, comparing is much
cheaper than computing the difference [34].

7.4.2 Shifter and Bit Heap Sizes

Due to the structure of the summation in the compressed FPY component, the
RShift and + components (Fig. 7.5) can be simplified. As the significand M
can only be positioned in {Zoney, ..., Zone;}, the actual size of the shifters is
max_shift; = d; + p; (Fig. 7.12).

Similarly, this structure reduces the actual number of bits to be added. The
summation is performed using a compressor tree that input the bit heap represented
in Fig. 7.12. Note that a full-size architecture always requires a rectangular bit array.

++++

Figure 7.12: Bits that can be omitted from RShift and the summation bit heap.

This configuration enables the adder to start on the LSBs while the MSBs are
still being compressed.

7.4.3 Operator Validation

The general FDPN A operators have been validated with the test bench generator of
FloPoCo, which compares outputs to the exact results computed using GNU MPFR.
The test bench consists of random tests and some directed tests as well as exhaustive
corner-case checks. Special cases and flag behaviour are extrapolated from the IEEE
standard for fused operations. The directed tests include:
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* Testing cancellations by forcing all the inputs to have the same exponent after
the pI'OdUCtI EXO + EYO = EX1 + Eyl =...= EXN—l + EYN—l = Ez, where
some products are randomly negative.

* Forcing inputs to have pairs of equal exponents after product: Ex, + Ey, =
Ex, + FBEy,,...,Ex,_, + BEy,_, = Ex,_, + Ly,_,, where one product is
negative and another is positive.

 Forcing M to be a product between normal and subnormal: E'x, = 0 and
By, > Ex, + By,,...,Ey, > Ex,_, + Ey,_,, By, > E7.

The FDP2Agp3; and FDP2Appg, operators have also been validated with a di-
rected framework which tests against a golden model implemented with Sollya [12].
This framework thoroughly explores catastrophic cancellation cases with different
significands that multiply to the same number, between Z and a product, different
multi-sticky issues, and the use of subnormals. This adds an extra half a million
tests.

7.5 Experimental Results

In this section, three variants of the FDP/NA operators are compared: the Full-
precision fixed-point accumulation from Chapter 5 extended with FP32 Z and R
(denoted Full), this chapter’s approach as per Section 7.3 (denoted Compressed)
and a reimplementation of Tao et al. [116] adapted to handle subnormals (denoted
Tao). The main difference between Tao and Compressed is that the former uses a
sequential algorithm to compute the mantissa shift values, whereas Compressed uses
a parallel prefix computation.

All these FDPN A operators have been synthesised with the Synopsys Design
Compiler NXT for the TSMC 16FFC node.

7.5.1 Synthesis Without Pipelining

The first target frequency is set to 1 MHz in order to explore the synthesis trade-off
between areas and combinatorial delays. The results appear in Table 7.1a and are
plotted in Fig. 7.13, along with the size of the internal additions. There is always
a threshold in IV above which there is no compression (Weompressed > Wran)- This
threshold is 2 in the homogeneous FP16 case, about 10 in the homogeneous FP32
case, and above 16 for the other formats studied.

In full-size operators, the size of the internal adder does not depend on N. The
rest of these operators essentially grows linearly with V. In the compressed operators,
the adder sizes increase linearly with NV, although extra pre/post-processing may be
compensated by the smaller shifters (see Fig. 7.12).

The parallel prefix computation of shift values is not always beneficial. In
particular it is not justified for N = 2.
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Figure 7.13: Combinatorial synthesis results as a function of N.
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7.5.2 Synthesis With Pseudo-Pipelining

In the context of a pipelined floating-point unit (FPU), the operators are under a
much stronger timing constraint. To evaluate this situation, the synthesis constraints
of n-stage operator pipelining is approximated with pseudo-pipelining, that is, single-
cycle synthesis at % the target FPU frequency. The approximation is that the reported
results do not account for the cost of the pipeline registers. Results are reported
in Table 7.1b. The number of pseudo-pipelining cycles n in Table 7.1b is selected
for each configuration as the area/latency trade-off most relevant for FPU design.
Wherever two solutions were close in Table 7.1a, both were re-synthesised for the
same n, and the best is reported.

7.6 Correctly Rounded Dot Products for N = 2

The case of the FDMDA (N = 2) has a particularly interesting trade-off. The
complexity of the operator is not egregious to the point it is prohibitive, and it
enables to accelerate and increase the accuracy of computation in multiple contexts.

7.6.1 Complex Arithmetic: Accuracy of FFT Twiddle Factor
Recurrences

A complex fused multiply and add R = XY + Z is implemented with the best
possible accuracy in only two operations: Noting j2 = —1,

. . Rre =0 XreYre - Xim}/im + Zre
R= Rre + ]Rim with { R — O((Xre)/im . Ximy;e L ZH:)

An illustration of practical importance of the complex FMA is the on-line compu-
tations of the twiddle factors of Fast Fourier Transforms (FFT) [9]. The twiddle fac-
tors of a N-point DFT are defined as WE = e = with P some power of 2 smaller
than N and k € [0, P — 1]. They can be computed offline with the results stored in
a table, or online using the recurrence ¢/*+10 = 70 x 19 with § = —%’T. Such a
sequence of n multiplications by e/’ may lead to O(n) error [117], so a twiddle factor
recurrence should be implemented carefully. Rewriting ¢/ (F+1)0 = ¢ik0 4 cik0 (00 1)
with e/ — 1 = —2sin? g + 7 sin @ avoids the cancellation in cosf — 1 [109] since @ is
small for large- N FFTs. Computing e/*+1? then becomes a complex multiply-add
that is accurately implemented by the FDMDA operators.

Fig. 7.14 displays the maximum and average errors for the FMA-based and the
FDMDA-based twiddle factor recurrences in log,, scale, for /V spanning successive
powers of two. The reference values are twiddle factors computed using the 11ibm
standard cos and sin functions, rounded to FP32 from FP64. The error is defined as
the modulus of the difference between a value and the baseline using FP64 arithmetic.
Since twiddle factors are roots of unity, these errors are both absolute and relative.
The FMA-based recurrence errors grow up to two orders of magnitude larger than
those of the FDMDA-based recurrence errors.

This study was conducted in the specific case of the Kalray’s MPPA [40].
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Figure 7.14: Base-10 logarithm of errors for the FMA-based and the FDMDA-based
radix-2 twiddle factor FP32 recurrences depending on the FFT size.

7.6.2 Improving Performance and Accuracy for Other Applica-
tions

Some of the various uses of this operator have been explored in [65].
Let u be value of the ulp, used to compute the error of a computation.

In the field of complex arithmetic, the FDMDA can perform a correctly rounded
complex FMA. It also computes more accurately a complex division, with an error
under 3u where using an FMA could result in cancellations, and of the norm %u
instead of 2u.

For error-free transforms, the FDMDA can compute the error of an FMA in one
instruction, and accelerates the TwoSum algorithm from six instructions to two. It
improves the speed and accuracy for various double-word operations : adding a
double word and a float, adding two double words, multiplying a double word and a
float (which is used for the multiplication by a constant), multiplying two double
words, dividing two double words and computing the square root of a double word.

The FDMDA can be used to compute the correct rounding of the product of three
floating-point numbers, and the product of four floating-point numbers with an error
of at most u. This can be used to compute accurately the sign of the discriminant for
cubic and quadratic equations.

Using an FDMDA instead of an FMA to compute a dot product of size N
approximately halves the error. It also improves the compensated sum algorithm.
The FDMDA can be used to accelerate polynomial evaluation.
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7.7 Conclusions

Architectures of exact fused dot product add operators with NV + 1 floating-point
operands and a compressed accumulator perform better than those with a Kulisch-like
full-size accumulator when the floating-point range is large and /V is small.

The FP16 format has a large precision with respect to its range, so the full size
approach performs better except for NV = 2. The FP32 format has comparatively less
precision with respect to its range, so the full size approach only becomes relevant
for N > 8.

The FDMDA operator (/N = 2) is included in the Kalray core to accelerate com-
puting with complex numbers. This has uses for FFTs but also network applications
like 5G acceleration. It is implemented for FP32 numbers in 4 cycles at 1.56 GHz
in a 4 nm node, and a FP64 operator might also be included (which would take 5
cycles).

This operator is quite slow compared to an FMA and could be accelerated by
using a Leading Zero Anticipator (LZA). Such a component can guess the Leading
Zero Count in parallel with the final addition, possibly off by one position. This
subcomponent is larger in area than an LZC, but would significantly reduce the
latency of the operator.

In the evaluation presented in this chapter, since /V is potentially large, the terms
of the sum are converted into two’s complement representation before being added.
For N = 2, it might be faster and cheaper to use a sign-magnitude representation
instead. Due to the shape of the bit heap, it is not clear which way of representing
the sign will be cheaper, and would require an evaluation of both options.

Having explored various dot product architectures adapted to various situations,
the following chapters will focus on function implementations.
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This chapter focuses on various methods of hardware implementation of numeri-
cal function. It mostly describes state of the art implementation methods, but contains
some contributions from before my PhD started and some minor contributions during

my PhD.

X
*win

f

*woul
R

Figure 8.1: Target architecture for hardware function implementation.

The architectures in this chapter (Fig. 8.1) implement the numerical function
f(z) on a fixed-point input of width wy,, and on a fixed-point output of width woy.

139
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Without loss of generality, the function f can be considered as in from [0, 1) to
[0, 1) by shifting the intervals and scaling the fixed-point numbers. This simplifies
the approximation and implementation of the functions as X, R € uFix(—1, —wy,).

Elementary functions, in particular exponential, logarithm, square root and
trigonometric functions, are crucial for many scientific computing applications.
Software implementations of elementary functions [94] rely on sequential algorithms
that cannot always be implemented with a large throughput. They also often use large
tables stored in the RAM (for either pre-computed values or polynomial coefficients)
that are slow due to memory access. Hardware acceleration can achieve higher
throughput for functions used in computationally intensive applications, for example
sine and cosine in Fast Fourier Transforms. Hardware acceleration of less used
functions can be implemented for dark silicon purposes (see Sec. 1.2.6).

In machine learning (Fig. 8.2), functions are used for scaling and activations.
Some of the scaling is multiplying by a power of two, which is trivial for floating-
point numbers. Sometimes, functions are used, like softmax or square root (see
Sec. 3.1.1) when normalising vectors with the euclidean norm.

Popular activation functions (see Sec. 8.3) include scalar functions like ReLLU,
tanh, ...In some contexts, softmax is considered like an activation function.

Memory/register subsystem
Z+Yi XixY;
|

Adapt quantisation domains (scale)

|

Compute activation function

|

Compress FP32 to storage format

|

Memory/register subsystem

N N YN )
— ] S

Figure 8.2: Architecture of steps for ML. In red the operators addressed in this part.

8.1 State-of-the-art Implementations

Techniques used to implement numerical functions vary greatly depending on wy,
and wyy;.
For small precisions, it is possible to use a direct implementation technique using

tables. For larger precisions, implementations based on approximated functions must
be used.
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Address | Table Content
0000 |10/0 010

0001 [0 0 O O
0010 |0 0 O 1
2win
1101 (1 0 /1 1
1110 {1 . 1/0 O
1111 11110
Wout

Figure 8.3: Example of Tabulation.

8.1.1 Table Implementations

Plain Tabulation

The simplest method is to store all the values of the function in a table (Fig. 8.3). In
this case, the input to the table X is an address, and the data at this address is the
value of the function rounded to the output format. The size of this operator in the
number of bits stored is exponential in the input size: wq, X 2*", making it suitable
for small to medium tables.

This technique provides correct rounding and is very fast. It also benefits from
extra optimisations from the synthesis tools, which view such tables as a truth table.

This method is particularly suited for FPGAs.

Sometimes trying a more complicated approach results in a more expensive
operator. For instance in [118] the reported cost for 5-bit in, 6-bit out sigmoid
function is 25 LUT4.

The area unit of FPGAs is the LUTk, for Look Up Table with £ inputs with
k € {4,5,6} for mainstream FPGA families. A tabulated function for w;, = k costs
exactly one LUTE per output bit. For w;, = k + 1, it costs 2 or 3 LUTk per output
bit (depending on the availability of a dedicated multiplexer in the FPGA cell). On
modern FPGAs, 8-bit functions can be implemented in less than 4 LUT6 per bit.

The implementation of the 5-bit in, 6-bit out sigmoid function using a plain table
would use 3 LUT4 per output bit, or a total of 18 LUT4 (and probably less if the
synthesis tool find any optimisation to perform).

Differential Compression

Lossless Differential Table Compression (LDTC) is an exact compression method
for tabulated functions which has the potential to reduce by up to 60% the number of
bits stored at the cost of one addition [63, 14]. In the example described in paper [14]
(Fig. 8.4), a table with wy, = 8, wyy = 19 storing 4864 bits was compressed into two
smaller tables storing a total of 3808 bits, at a cost of an addition on 7 bits.

This compression separates the values of the large table into 7, the table of
sub samples, containing the most significant bits of the result, and 7} the table
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Figure 8.4: Lossless Differential Table Compression. Figure from [14].

of differentials, that adjust the sub sampled value such that the sum results in the
target value. This technique works well for table values containing values that are
monotone or close to each other.

8.1.2 Analytical Methods

The near entirety of implementations of numerical function use analytical methods
to approximate the numerical function. Those methods are based on analytical
considerations on the function.

The implementation of numerical functions happens in two steps, with two
sources of error. First, the function must be approximated by another function whose
implementation relies only on operators that can be easily built in hardware, typically
sums and products. Then, this approximation is implemented in hardware.

Polynomial Approximation

Polynomial approximation is among the most reliable techniques for larger target
precisions.

The requested function is first approximated with a polynomial function. The
Sollya [12] tool assists in this step, providing state of the art approximation tech-
niques. The difference between the real function and its mathematical approximation
is called the approximation error. Sollya also assists in evaluating this error.

This approximation can then be evaluated in hardware. This implementation
performs multiple operations with intermediate rounding, resulting in implementa-
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tion errors which can be mitigated by adding g guard bits to the LSBs during the
computations.

Since extra bits were added, a final rounding must be performed, incurring an
extra rounding error of %ulp. For this reason, the analytical methods cannot produce
a correctly rounded architecture.

The faithful rounding can be guaranteed by FloPoCo [34]. The number of guard
bits and the precision of the coefficients are implementation-specific parameters
determined FloPoCo to make sure the sum of the three errors, approximation, imple-
mentation, rounding, is below lulp.

address Polynomial Coefficient Table

A
\‘63 C2 €1 o
e " ’+ |' y ’+ —

Figure 8.5: Horner Scheme for piecewise polynomial evaluation. Figure from [34].
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For most functions, plain polynomial approximation uses a very large degree
polynomial. It is often much easier to use break down the interval, and use multiple
smaller degree polynomials. Tables are used to store the different coefficients for
each table, and the polynomials are evaluated using a Horner Scheme (Fig. 8.5).

While the intervals could be arbitrary in number and size, FloPoCo implements
a uniform piecewise approximation, where the number of intervals is a power of two.
This enables a cheap indexing of intervals: the most significant bits of the input X
make the address A of the interval.

Multipartite Method

The most used polynomial approximation technique is piecewise linear. In the
example Figure 8.6, the address of the interval is on o = 4 bits, resulting in 2¢ = 16
intervals. For each interval at address A, the position within the interval x_sx_g is
multiplied by the first degree coefficient ¢; (A) and added to the constant coefficient
co(A): R=co(A) + c1(A) X v_52_.

Since multiplication is so expensive, it is not a big leap to replace the computa-
tions ¢1(A) X z_5x_g by a pre-computed table (Fig. 8.7). This technique is called
the bipartite method (two tables), invented in the specific case of the sine function
[113], and independently re-invented in the specific case of the reciprocal function
[19]. The table of the constant coefficients is now called the Table of Initial Values
(TIV) and the table containing the pre-computed multiplication of the coefficient of
degree one to the interval position is called the Table of Offsets (TO).

A series of improvements generalised this technique to arbitrary functions and to
more than two tables [107, 111, 93, 111, 93, 22, 63, 62]. The multipartite method
replaces the tabulation of the values of a function by an architecture that sums the
output of several tables indexed by various subsets of the input bits (Figure 8.8).
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Figure 8.6: Architecture for piecewise linear approximation.
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Figure 8.7: Example bipartite architecture.
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Figure 8.8: Example multipartite architecture.

The construction of the multipartite table minimising table size has been studied
in [22, 63]. It is an analytical process that starts with piecewise linear approximation,
and can only ensure faithful rounding. The following section presents a different
method of construction multipartite tables that can ensure correct rounding.

8.2 Multipartite Construction Using Integer Linear
Programming

Instead of using analytical methods, the optimisation of multipartite tables can be
formalised using Integer Linear Programming (ILP) so that generic solvers can be
used.

8.2.1 Properties of the Multipartite Decomposition

When using solvers, what matters is the resulting architecture, an example of which
is shown in Figure 8.8, and the content of the tables, plotted in Figure 8.9. For each
point of the horizontal axis of Figure 8.9, the sum of the content of the three tables
that are accessed for this point provides a very good approximation to the function.

These figures illustrate various opportunities to reduce the table size that have
been exploited in previous works.

First, the value stored in 75! is a multiple of 16/256, which means that its trailing
zeroes do not need to be stored. In the general case, the same can hold for other
tables, but it is not exploited in this small example.

The multiple tables are not addressed by all the bits of the input. The table 75
only holds 8 distinct values, addressed by the 3 leading bits of X (Figure 8.8). In
Figure 8.9 only one value of 75 is stored for each horizontal line. The same holds
for T2, which only holds 32 values (addressed by the 5 leading bits of X). Table

'In previous works, this would be called the sampling table of the compressed TIV.
2In previous works, this would be the differential table of the compressed TIV.
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Figure 8.9: Tables for an approximation to (52 — 1).
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Ty® only holds 8 segments, each of them being repeated 4 times. As each segment
contains 8 values, T altogether holds 64 values. This corresponds to inputting to 7§
the 3 leading bits of X (indexing the set of repeated segment) and the 3 LSB bits of
X (indexing the value in the segment).

Since each table incurs an additional approximation, a classical technique is
to perform to computation in extended precision (¢ = 2 bits on the example of
Figures 8.8 and 8.9). The approximation and rounding errors accumulate in these
guard bits, which are then simply dropped [22].

In this example, the total number of bits stored in tables is 23 x 4 (1) +2° x 8
(Ty) +25 x 5 (Tp) = 608 bits, much smaller than 2% x 8 = 2048 bits for a plain
tabulation in a 8-bit in, 8-bit out table. This compression ratio improves with the
input/output size.

stored Values\ S /
N 9
/ values computed 2 ‘l
by symmetry ? ﬁj i) ? ? ?

e (TITTTT]

Figure 8.10: Using symmetry to trade one table input bit for two rows of XOR gates.

As most of the tables (on our example 77 and 7j) contain piecewise linear
approximations, another table compression opportunity is to exploit the symmetry
of each line segment with respect to its centre [107]. This opens the possibility to
replace one table of Figure 8.8 with the slightly more complex architecture shown in
Figure 8.10. By removing one input bit to the table, this halves its size, but at the
cost of two rows of XORs that implement the negation.

All this defines a fairly large implementation space, but an exhaustive enumera-
tion of this space is tractable [63] for the sizes for which such architectures make
sense, that is, for input/output sizes between 8 bits and 24 bits (for larger precision,
the tables get really large, and higher-order approximations must be used anyway).

However, this exhaustive exploration of the parameter space is based on a worst-
case error analysis that can only guarantee faithful rounding: the value returned
by the architecture is not always the value nearest to the function value. Another
equivalent point of view is that the error (z) = R— f(z) induced by the architecture
is bounded by one unit in the last place (ulp) in a faithful architecture. Conversely,
the error of a correctly rounded architecture is bounded by half an ulp.

Using an ILP model of multipartite architectures, inspired by comparable work
on multiplier-based piecewise approximation [21], replaces analytical considerations
on the function, as used in previous works, with a generic global optimisation of
the table contents. This results in several minor improvements, in particular smaller
values of g can be used. In this model, the lossless table compression of the TIV of

3In previous works, this would be a TO.
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2 An ILP Model of Multipartite Architectures
bit index | - n
AL T | T [bits|input do Ty
o By offset, -
NN N NN its input to 7|
Y1 Jo
| SR I ' bits input to T, 4
X =T i | bits input to 7
o bits
Figure 8.12: Multipartite input word decomposition. Figt om [24].
The input word decomposition used in this section (Fig. 8.12) isjthe same as the
> used in the analytical method
Ideally we would like to express as an ILP problem the choice-ofjthe architecture
parameters as well as the choice of values to fill the tables, in such a way that an ILP
S r-could find the smallest-architectur aluating the function-wfith the required
precision. However, an ILP solver can only optimise linear problems| To circumvent
this limitation, n a parameter has a non-linear impact on the lem, it will be
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enumerated in a loop outside of the ILP, so that its value can be considered a constant
inside the ILP.

The core of the method is to have 2" constraints, one for each possible input
value X in the fixed-point interval [0, 1).

In each of these 2* constraints, (C1) the input X is constant, thus the non-linear
address A;(X) is also a constant, provided that the values for all the parameters
involved (m, «, f3;, v, sym,) are previously fixed. An external loop is used to
enumerate the values of these parameters, leading to multiple calls to the ILP solver.

As fixed-point numbers are implicitly scaled integers, the ILP formulation may
use only the integers.

vX e {0,...,2" — 1} Y, (X) < RX) < Yy(X) (Cl
The variable R(X) (C1) represents the output of the architecture for the input
X. The values Y7, (X) and Yy (X) depend on the target rounding. In the case of
faithful rounding, Y7 (z) and Yy (X) correspond to the two values the function is
allowed to take. In the case of correct rounding, Y7,(z) and Yy (X) are both equal
to the correctly rounded value of f(X): In both cases, for a constant X, the bounds
Y7 (x) and Yy (X) are also constants.
The target function f is completely abstracted from the ILP, where only a target
interval of possible values, Y, and Yy remain.

g=2 g=
C T[] T
+ B m T — T,
; | B T ; - T
+ (1 T 1
+ ———— 1 * T 11 o
= | [1 Y = | [11] Y
trunc. to | R trunc. to | R
(a) Faithful rounding. (b) Correct rounding.

Figure 8.13: Alignment for % — 1 on 12 bits. The ILP had the possibility to use
the greyed bits but chose not to.

Multiple other constraints [24] model the functioning of the architecture, assuring
that the truncated sum of all the tables is in the output interval. They also measure
the size of those table, and enable to set up a cost function that minimise the number
of stored bits, by removing guard bits independently for each table (Fig. 8.13. The
grey squares in Fig. 8.13 represent available bits that were removed by the linear
program in one specific example.

Solving the ILP Program

An external loop enumerates the non-linear parameter space, and for each parameter
vector the solver works on a model that defines the linear parameters and fills the
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table. This approach provides the optimal solution with respect to the cost model
used, but it is quite slow: firstly, the parameter space is large, secondly the ILP
problem is large, too, with more variables than there are bits in the tables. In practice
this approach does not scale beyond wi, = woy = 12.

The use of various heuristics like pruning the external loop and replacing part of
the bit arrays with integers [24] improves solving time but sacrifices the guarantee of
optimality.

Maximum number of guard bits

For faithful rounding, the formula g = 1 + [log,(m — 1)| from the literature [22]
provides a safe value of g, in the sense that a solution with this value is guaranteed
to exist (and the ILP sometimes finds solutions with fewer guard bits). However, it
could happen in principle that an overall better solution exists with a larger g, so this
is a heuristic choice.

For correct rounding, an empirical study for w;, = we, € {8,10, 12,14} sug-
gests the formula g = 1+ (m — 1) X [logy(wew) — 2], so this formula is currently
used in the code.

8.2.3 Results

The ILP construction and the outer loop are implemented in the Julia language with
JuMP, interfaced to the Gurobi solver. The obtained tables are then imported in
FloPoCo to generate the architecture, in particular the compression tree. For the
small bit width addressed here, the resulting VHDL could be tested exhaustively for
correct or faithful rounding using the (reliable and time-tested) FloPoCo test bench
framework.

Those architectures are compared in detail in [24], using synthesis results ob-
tained using Vivado v2022.1 for the Xilinx Kintex7 target.

This method of filling the tables is much slower than the previous multipartite
and table compressions methods. It takes a few seconds for small sizes (8 and 10
bits), a few minutes for 12 bits, and a few hours for 14 bits. The computation is
slower for faithful rounding compared to correct rounding. This method obviously
scales poorly to larger sizes. Moreover architecture that is optimal in table size may
no longer be optimal when the operator are synthesised.

With the ILP method, correct rounding is at best twice as expensive as faithful
rounding in area, significantly reducing the difference of size between those rounding
options.

Since the function is abstracted out of the ILP model, this method could be
used for the lossless compression of other sort of tables, similarly to LDTC. This
idea will be used in Chapter 9. However, this would require an adjustment of the
decomposition loop and the guard bit computation, as heuristics are not likely to
work on other types of tables.
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8.3 Case Study: Activation Functions for Machine
Learning

When building a network in machine learning, the choice of the activation function
used will greatly impact the performance and cost of a network [39]. Finding new
activation functions, either better or cheaper to implement, is an active field of
research.

Many of those are variants based on these 5 common activation functions.

* Hyperbolic tangent: tanh(x) = —Z:;z:;
* Sigmoid 0(z) = 1=

0 ifz<0
* Rectified Linear Unit: ReLU(x) = 1 o

z ifzx>0

—(e*=1) ifz <0
T ifz>0

Exponential Linear Unit: ELU(x) = {

* Gaussian Error Linear Unit: GELU(z) = 3(1 + erf(75))

Sigmoid Linear Unit (or Swish-1): SiLU(z) = zo(z)

expm(z) = e~ %, x > 0 is also often implemented in hardware machine learning
accelerators to compute the softmax function.

8.3.1 ALPHA

FloPoCo offers a framework called ALPHA [64] (for Activation in Low Precision
with High Accuracy) for the fixed-point implementation of these common activation
functions.

It implements various optimisations on each function like symmetry (noted S in
the results) or a reduction from the ReLLU function (A). The resulting function is then
approximated using tables (T), compressed tables using LDTC (CT), multipartite
tables (MPT), and a Piecewise Horner scheme of degree 1, 2 and 3 (PH1, PH2, PH3).

This frameworks allows easy generation of those functions for testing purposes,
comparing various methods depending on the target architecture. This comparison
work was carried out for VLSI using Synopsys Design Compiler NXT for the TSMC
4 nm technology node.

As an example on the SiLU function (Fig. 8.14), all the methods are synthesised
for a target precision and frequency. Once plotted, the best trade-off for the given
synthesis parameters appears.

This best case was determined for each of the six functions offered by ALPHA
(Tab. 8.1).
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Table 8.1: Comparison of various approximation methods for common activation
functions.

w tanh o GeLU ELU SiLU e ”
g T T TA TA TAS T
6.6/32 10.0/41 3.0/42 2.3/28 4.1/49 9.0/35
12 PHIS PH2 TAS PHIA PHIAS PH2
3547100 69.8/100 17.8/89 17.6/74 22.7/100 28.7/100
16 PHIS PH2 PHIA S PHIA PHI1AS PH2
146.8 /100 99.0/100 55.7/100 73.1/100 69.3/100 58.8/100

Each entry reads: best method, area in p? / % of cycle

8.3.2 Activation Function Implementation in Kalray’s Accelera-
tor

Activations in Software

The plain table method is often used in software if no hardware is present to accelerate
the implementation. The whole table of results is stored in the cache, and memory
accesses are used as function calls. This of course requires the cache to be large
enough for all the function values, otherwise this method can be very slow.

For Kalray, this is the implementation that must be beaten to be able to add
hardware function implementations in the accelerator. This operator:

* is free in terms of area,
* can implement any functions, changeable at runtime,

* has an input size of up to 16 bits, for any data type (fixed-point, floating-point,
or any other exotic format), and an output size of up to 256 bits,

BUT can compute two values per cycle,

BUT blocks the Load-Store Unit.

Kalray chose not to include any of the implementations of activation functions as
optimised in Section 8.3, as they do not beat the table based implementation for two
reasons.

The Limited Choice of Functions :

Machine Learning research moves extremely fast. It is hard to predict which activa-
tion functions will be used by the time the chip is on the market, in two to three years.
One function is cheap to implement, but ALPHA identifies six popular activation
functions, making the Special Function Unit (SFU) already much more expensive.
If some of these functions become obsolete in the future, their implementation is
wasting silicon.

The software implementation does not have any of those limitations, as the table
for any function can be loaded at runtime, making it future-proof.
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A General Distrust for Fixed-point Arithmetic

While Neural Networks work perfectly with smaller and smaller floating-point for-
mats, fixed-point formats do not seem to work as well to store weight and activations.
It is not clear how the activation functions of trained networks are implemented,
and how the networks will react if the implementation changes. Using too much
precision is a safe way of avoiding this problem. Machine Learning researchers are
also attached to representing accurate zeros and near-zero values, keeping them true
to floating-point representations.

The software implementation is also a clear winner, as it can take any types of
input and output, including floating-point numbers.

Floating-point Functions

The only situations where a software table is not the best solution is for steps that
make use of the LSU, or that require a better throughput than two function evaluations
per cycle.

The softmax function is computed using the exponential of every coordinate of
the vectors requiring N + 1 evaluation of the exponential function for a vector of size
N, making it’s hardware acceleration competitive compared to the software table
implementation (Chap. 10).

In the case of the reciprocal square root function (Chap. 9), the gain is less
straightforward. When using it not normalise a vector of size /N, only one inverse
square root is used per vector. The hardware acceleration is interesting mainly when
the vectors are small, for instance for graphical transformations (N = 4). It is also
used for the batch normalisation when training convolutional neural networks, for
batch sizes IV typically between 32 and 128.

For this reason, the reciprocal square root function %« is only partially accelerated
in hardware, giving more freedom to the user to compute other functions from the
same family instead : /= and % These more general purpose functions can then be
used to help approximate various activation functions, for example tanh.
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The square root function is an elementary function with wide-ranging applica-
tions, particularly in the field of vector mathematics.

One of the common variants is the reciprocal square root, used to compute
the Euclidean norm of a vector during normalisation. In this process, each vector
coefficient is divided by the norm to ensure that the resulting vector has a length of
one. This normalisation is essential for various graphical transformations.

It is also used to accelerate training with batch normalisation (see Sec. 3.1.1).

Squaring the reciprocal square root can be used to compute the reciprocal, and
multiplying it by the input to compute the square root.

155
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The square root function and its variants are already hardware accelerated in
most processors, including Kalray’s where one square root function can be computed
per cycle in the core. This leads to two issues. First, when intensive computations
are carried out within the accelerator, going back and forth with the core for every
computation is not ideal. Secondly, the throughput of one function approximation
per cycle is too low for an accelerator that manipulates a vector of 8 FP32 numbers.

This leads to the need of a new accelerator-specific way of implementing the
family of square root functions, using a mix of hardware and software accelerations.

9.1 Newton-Raphson Method for the Reciprocal and
Square Root Functions

Figure 9.1: Babylonian tablet YBC-7289.

While the method’s name Newton-Raphson suggests it was invented in the 161
century, traces of this method used in the computation of the square root appear in
various older sources. Some Babylonian tablets from around the 16" century BC
(Fig. 9.1) are engraved with a precise approximation of v/2, and other tablets [51]
show this method used to compute square roots. Greek Mathematician Heron of
Alexandria describes the same method in his book Metrica [1] in the 1™ Century
AD.

Mathematicians Raphson and Newton generalised this method to compute a root
a of any function f: the number a such that f(a) = 0. It is an iterative method, and
formula for each iteration is:

T p)
n

where [’ is the derivative of f.
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This method is used in modern computers to compute the reciprocal function,
and the square root functions [16]. It can also be used for divisions.

This method is proven to converge quadratically, that is the number of "correct"
bits doubles with every iteration. Starting with a good approximation of the root x,
considerably speeds up the method by reducing the number of iterations.

9.1.1 Reciprocal Function

Let a € R*. The value é can be computed iteratively with Newton-Raphson’s
method, provided there is a function f such that f (%) = 0. Many functions satisfy
this condition, for example:

1 , 1
r)=——a , ) =——
fla) = - fw) ===
The recursion to compute % is:
Lp41 = Tp —
f'(xn)
1
I —
g,
1
=1, + 22 X (— —a)

=x, X (2—x, X a)
9.1.2 Square Root and Reciprocal Square Root

Square Root

Let a € R*™. The value /a is a root of the function f:

flxy=a*—a , fl(z)=22

The recursion to compute /a is

Tyl = Ty — f(zn)
f(zn)
_ 2 —a
o 22,
Ty a
=5t

This formula is not ideal as the iteration requires a division to compute _*.
Division is an expensive operation that is also computed iteratively, which Would
greatly increase the time used to compute /a.

A way to circumvent this problem is to use the Newton-Raphson method to

compute f instead, and then use for \/a: a x \/La Va. Tt can also be used to
1

obtain L as L x 1,
a a a
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Reciprocal Square Root

When trying to compute \/La’ a function that has said root is:

1 , -2
fe)=—75-a . fla)=—5
Then the recursion to compute \/La is:
_ f(n)
Tpy1 = Tp f/(l'n)
1
= :L'n _— ;2
3,
z3 1
=x, + ? X (:[‘_% — CL)
1 3
—xn+§ X (x, —x, X a)
1 3 9 G
—Exan(§—l’nX§)

9.2 Implementing Correct Rounding in Software

Those formulas work perfectly in the mathematical world, however on computers
rounding errors makes the method less perfect.

9.2.1 Software Iterations: Using the Fused Multiply Add

In software, correctly rounded % and /a can be obtained if an FMA (Fused Multiply
Add) isused [17, 16].

The computations are rearranged to reduce rounding errors. The iterations for
the square root algorithm are rearranged into three recursive formulas: h; is an
approximation of ﬁ, g; of \/a and r; is the residue of the computation, and is
closer and closer to 0.

The seed approximating \/La is called .

Those values are initialised as:

1
yo = seed(a) = %(1 +¢€)
hg =0.5 x Yo
go = a X Yo

o = —@go X h() + 0.5
The recursions are:
hpi1 =1n X hyy + hy

In+1 = Tn X gn + 9n
Tnel = —Gnt1 X iy +0.5
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Those iterations are still not enough to compute the correct rounding of /a. The
error on g, can be computed exactly with an FMA: e = a — ¢, X ¢,,. This enables
to correctly round the result: o(y/a) =€ X h,, + G-

When computing \/La’ the error term is % — 71; X Ny X hy,. Computing this error
would require a fused operator including a division, which is not available. However,
faithful rounding is achievable.

These algorithms work when none of those computations overflow or under-
flow the format used. Some strategies used to ensure this are described with the
implementation (see Sec. 9.4.1).

Choosing a seed that is sufficiently precise to bootstrap the iterations is crucial to
the convergence of the method. The seeds are generally stored in tables, which are
either saved in the RAM or in hardware.

An interesting historical example of seed approximation is the Fast Inverse
Square Root algorithm for FP32 numbers, used notably in the video game Quake
Il Arena (1999). The seed is computed by taking the FP32 a, and manipulating the
encoding of a as an integer (Algo. 4).

Algorithm 4 Seed computation in the Fast Inverse Square Root

long 1i;

float a, seeda;

i = ( long *~ ) &a;

i = 0x5£3759df - (1 » 1 );
seeda = * ( float * ) &i;

The computed seed is then refined using a Newton-Raphson iteration. The magic
constant 0x5f3759df is attributed to Gary Tarolli [110].

9.2.2 Special Case: Significand is all ones

The software algorithm [17] for the reciprocal is not proven to be correct for in the
case where the significand is all ones, which corresponds to the biggest number
of a given exponent. In this case, the algorithm returns a faithfully rounded result
instead of a correctly rounded one. This input is ignored in the construction of
our operator, as either the computation does not need the extra precision (if for
example in fast-math mode), or it must be corrected in software, potentially detected
in hardware where a flag is returned.

9.2.3 Hardware Iterations: Existing Kalray Architecture

The square root /a function is implemented in Kalray’s core Special Function Unit
(SFU) as a table of seed, followed by Newton-Raphson iterations both completely in
hardware. This operator is pipelined in 12 cycles, and has a throughput of 1.

It uses standard techniques, starting with a table of seeds approximating the
inverse square root \/La on 9 bits, and two Newton-Raphson iterations plus a correction

step that computes the correct rounding of /a.
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9.3 Seed Tables Redesigned

The proposed architecture removes a Newton-Raphson iteration by redesigning the
seed table. Instead of a 9-bit seed, a ~ 15-bit seed is used, and only one iteration of
Newton-Raphson and the corrective step is needed to achieve correct rounding for
V/a in FP32,

9.3.1 Specifications of the Seed Table

The specifications of the seed table are defined by which algorithms will be using it,
and the expected result.

Square Root and Reciprocal Square Root for FP32

The algorithms used for FP32 are similar to the ones previously described. The
algorithm for the reciprocal square root (Algo. 5) is expected to return a faithfully
rounded result.

1

Algorithm 5 Computation of NG

in one Newton-Raphson iteration

Yo < seed(a)
h0<20.5><y0

go < a X Yo

rog <= —go X hg +0.5
0<="To X Yo+ Yo

The algorithm for the square root (Algo. 6) is expected to return a correctly
rounded result. If the corrective iteration is removed, then it is expected to return a
correctly rounded result.

Algorithm 6 Computation of y/a in one Newton-Raphson and one corrective iteration

//Newton-Raphson iteration
Yo < seed(a)

hy < 0.5 x Yo

9o <= a X Yo

To <= —¢go X ho + 0.5

hi < rg X hg + hg

g1 <="To X go+ go

/lg1 = +/a in faithful rounding
/ICorrective iteration

€1 <= —g1 Xgqg1+a
o<=e; Xh + g

The output to the seed operator is packed into an FP32 number so it can easily
be manipulated in software.
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Reciprocal for FP32

The same ia seed could be squared and used as a seed for reciprocal. This requires
a way to compute the absolute value of the reciprocal square root as well as conserve

the sign for the squaring step: sign(a) x ﬁ, which are cheap manipulations of the

sign bit.

Algorithm 7 Computation of % in one Newton-Raphson and one corrective iteration

//Newton-Raphson (Markstein) iteration
Yo < seed(a)

ZTo < Yo X Yo

rg &= —a X o+ 1

T1 <= 719 X Ty + To

//Corrective (Markstein) iteration
r<—axx+1

o<1 Xx+ 11

The algorithm for the reciprocal function (Algo. 7) is expected to return a
correctly rounded result. If the corrective iteration is removed, then it is expected to
return a correctly rounded result.

Correctly rounded FP16 Reciprocal Square Root

A correctly rounded multipartite table implementation of \/La [24] on 10 bits requires
3 guard bits, resulting in an approximation on 13 bits in total. The 15-bit seed used
for the FP32 implementation should be sufficient to compute the correct rounding on
10 bits of —-.

This constraint is added to the specification. If the input to the seed table is an
FP16, then the rounded output seed is expected to be a correctly rounded \/La The
output must packed in an FP16 format.

This specification is only for Round to Nearest ties to Even. To avoid expensive
rounding logic, Round to Nearest ties to Away from zero is used in hardware, since
ties are not possible [85]. This rounding mode is computed in hardware by adding
half an ulp to the seed, and then truncating the significand.

Square root for FP16

Obtaining an FP16 correctly rounded square root for FP16 can be constructed starting
with the correctly rounded ia It is better for the throughput to start from the correctly
rounded FP16 instead of using the FP32 seed, as the seed is packed into an FP32
format.

A first approximation y/a ~ a X \/La can be used. However, this does not result
in a correctly rounded result. For the 2048 FP16 floating-point numbers in [1, 4), for
only 58 of them does this computation not result in faithful rounding. Empirical test
of the error shows it is always below 1.4 ulp.

When using a refining iteration (Algo. 8), correct rounding is guaranteed for all
inputs.
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Algorithm 8 Computation of /a in FP16 with one corrective iteration

Yo < recsqrt(a)

ho <= 0.5 % Yo

go <= a X Yo
//Corrective iteration
€y <= —go X go +a
0 <= ey X hg + go

This specification is computed based on correctly rounded FP16 \/La and does not
affect the seed table.

Reciprocal for FP16

Squaring the FP16 output \/La to obtain the reciprocal does not provide a correctly

rounded result. For the 2048 FP16 floating-point numbers in [1, 4), this computation
not result in faithful rounding for 266 of them. Empirical test of the error shows it is
always below 1.4 ulp.

Algorithm 9 Computation of % in FP16 with one corrective iteration

Yo < recsqrt(a)

9o < Yo X Yo
//Corrective iteration
e <= —go xa+1
0 <= €0 X go+ go

Using a refining iteration (Algo. 9) does not guarantee a correctly rounded result,
as two inputs (3.63281 and 3.99805) in [1,4) are only faithfully rounded. One of
those two inputs corresponds to the situation described in section 9.2.2.

This specification is computed based on correctly rounded FP16 \/La and does
not affect the seed table, requiring a software correction when correct rounding is
required.

9.3.2 Constructing a Table that Satisfies the Specifications

As a summary, the seed table must satisfy multiple specifications:

» Using Algo. 5 outputs a faithfully rounded \/La in FP32,

 Using Algo. 6 outputs a correctly rounded +/a in FP32, and removing the
correction iteration outputs a faithfully rounded result,

* Using Algo. 7 outputs a correctly rounded % in FP32, and removing the
correction iteration outputs a faithfully rounded result,

* Rounding the seed outputs a correctly rounded \/La in FP16.
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The seed table is constructed such that a seed is deemed valid only if it satisfies
those six constraints.

1 1 _ 2-’%% ife =2k, kecZ
Va o 2¢x 1.F 27Fx L= ife=2k+1,keZ

While the seeds can be computed analytically and proven to satisfy the conditions,
it is much faster to exhaustively test the seeds, especially as argument reduction
reduces the interval to test to [1, 2). An algorithm using MPFR [50] can test the seeds
for all the 8,388,608 FP32 floating-point numbers in a € [1,2) (even exponent),
and another 8, 388, 608 floating-point numbers a € [2,4), which takes 12 seconds in
total.

Determining the Size of the Seed Table

A preliminary test can determine the size of the seed table. Thanks to the quadratic
convergence of the Newton-Raphson method, a seed of 12 bits should be sufficient
to obtain 24 bits of precision (FP32) in one iteration.

The first test uses for an FP32 input a the seed \/La on Wy, bits of precision, with
Woue € {11,...,16}. This test is equivalent trying a seed table with w;, = 24 input
bits, and w,,, output bits, and suggests that w,, = 14 is the smallest size where the
specifications are satisfied.

The input of the seed table X is computed by truncating the significand of the
FP32 input of the operator. When wy, is taken into account in the testing algorithm,
extra output bits are required to meet the specifications.

The specifications are relaxed to only requiring \/La and %

The smallest seed table size found is w;, = 14, wy, = 15, including the implicit
bit of the floating-point format. Compared to the ideal quadratic convergence of the
Newton-Raphson method, three bits are lost to rounding errors.

Computing an Interval of Suitable Seeds

Not all the inputs X of the table require the final wq,,, = 15 of output precision to
find a suitable seed. This is reflected on the number of suitable seeds for each input.
To ease the storage and the future approximation of this table, an interval of suitable
seeds is computed instead of a list of all the seeds.

Table 9.1 shows the number of table inputs X that have an interval of suitable
seeds of size N. The total number of inputs X adds to 2'3 instead of the expected
2win = 214 gince the implicit bit is always 1. Including the implicit bit in the table
size is interesting as the quadratic convergence takes this bit into account.

Table 9.1 shows that an instance of a seed table conforming to the specification
is possible, as no inputs X have O suitable seeds.

The column N = 1 means that there is only one possible seed for 37 different
inputs X, which means that for those inputs the seed requirement is very strictly
on 15 bits. The columns for N > 3 show that over 85% of seeds have 3 different
options, meaning that most seeds would work with 14 bits instead of 14.
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Table 9.1: Number of table inputs X that have N suitable seeds for intervals [1, 2)
and [2,4).

0| N=1 2 3 4 5 6 7 8 N>9

0 4 3 51 183 592 | 919 | 1357 | 3068 | 2015

[1,2) 0% | 0.049% | 0.037% | 0.62% | 22% | 72% | 11% | 17% | 37% | 25%

0 0 3 17 55 456 | 3346 | 4179 | 131 5
0% 0% 0.037% | 0.21% | 0.67% | 5.6% | 41% | 51% | 1.6% | 0.061%

[2,4)

This is a motivation to look for a seed table that is only precise when it is required,
which should reduce the cost of the resulting architecture.

Padding the FP16 Input

When dealing with FP16 inputs, the significand is only 11 bits, but the input of the
seed table is w;, = 14 bits.

Table 9.2: Number of table inputs X that have a number /N of suitable seeds,
depending on the number concatenated to the FP16 input

(N=0| 1 | 2| 3 | 4] 5 |6 |7][8]N>9
Interval [1,2)
X (000) | 0 | 36 [332|1183|2053 | 3657 913 [ 11|4| 3
X (001 | 17 | 56 | 348 | 1136 | 2031 | 3688 | 898 | 11 |4 | 3
X (0105) | 58 | 73 | 369 | 1102 | 1987 | 3675 | 911 | 11 |3 | 3
X (011y) | 121 | 87 | 343 | 1108 | 1981 | 3619 | 916 | 10 |4 | 3
X (1005) | 185 | 88 | 357 | 1093 | 1954 | 3601 | 898 | 10 | 4 | 2
X (101y) | 259 | 92 |352|1076 | 1927 | 3584 | 884 | 12 |3 | 3
X (1105) | 331 | 105 | 351 | 1044 | 1925 | 3531 | 887 | 12| 4| 2
X (111y) | 421 | 99 | 340 | 1040 | 1875 | 3513 | 887 | 11 |3 | 3
Interval [2,4)
X (0002) | 0 1 | 34 | 515 | 3180 | 4064 [ 396 | 2 [0| 0
X (001y) | 0 6 | 60 | 500 | 3153|4088 383 |2 |0| O
X 010) | 9 |40 | 59 | 502 | 3129|4059 392 2 |0 O
X (011y) | 37 | 63 | 70 | 465 | 3146 | 4022 387 | 2 |0 | O
X (100,) | 86 | 71 | 65 | 467 | 3114|4003 384 | 2 |0 | O
X (101y) | 137 | 77 | 64 | 472 | 3076 | 3969 [ 395| 2 |0 | O
X (1105) | 195 | 75 | 65 | 475 | 3048 | 3958 [ 374 | 2 | 0| O
X (111y) | 254 | 72 | 62 | 452 | 3078 | 3897 |375| 2 |0 | O

The FP16 input must be padded with three bits, and those must be a constant
value. Experiments described in Table 9.2 tested all the different padding values,
showing the best results when the input is padded with zeros.

9.4 Implementation

The implementation for Kalray’s accelerator include a hardware acceleration of the
seed table, which are then used for software Newton-Raphson iterations using the
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vector FMAs operators.
This operator outputs a seed that satisfy the following specifications:

» Using Algo. 5 outputs a faithfully rounded \/La in FP32,

 Using Algo. 6 outputs a correctly rounded /a in FP32, and removing the
correction iteration outputs a faithfully rounded result,
* Rounding the seed outputs a correctly rounded \/La in FP16.

For both formats, it computes three variants in sign:

« L
Vva

1

m,
* sign(a) x \/1ﬂ

with a return of NaN if a is negative,

9.4.1 Argument Reduction to a Fixed-Point Function
The floating-point input a of the operator can be reduced into a smaller fixed-point
interval by computing on the exponent separately.
1 1 {2_"‘>< ife =2k keZ
_— = —e = K 1 . -
va V2 x1.F 27X o ife=2k+LEkeZ

Those two cases correspond to approximating the function on two intervals, [1, 2)
and [2,4) (Fig. 9.2).
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Figure 9.2: Function implemented after argument reduction, normalised.

If the exponent is even, then the function to be approximated is ﬁ, with

F € vuFix(—1, —wp). If the exponent is odd, the function is \/Q}FT, with F' €

uFix(—1, —wp).
The validation of this operator can be done on all FP32 and FP16 inputs in [1, 4),
barring overflow and underflow issues.
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9.4.2 Modifying the ILP model of Multipartite Tables

After argument reduction, the function is implemented on two intervals with each a
constant exponent, which means that it is now a fixed-point function implementation.
The same method as Chapter 8 can be used, modifying the possible output values
Y7, Yy to fit the interval of possible seeds. Modifications to the computation of the
guard bit and the external loop is required to be able to find better solutions.

Unfortunately, I did not have the time to complete this experimentation before
submitting the manuscript.

9.4.3 Proposed Architecture

The seeds determined previously used 14 input bits, including the implicit bit. The
implicit bit can be abstracted into the function, but the LSB of the exponent must be
concatenated to determine on which interval the input is, keeping an input of 14 bits
to the multipartite tables.

The architecture is depicted in Figure 9.3. The FP16 and FP32 inputs are first
unpacked. Subnormal inputs can be supported by normalising the fractions, which is
not represented in the figure.

The fraction I of the FP16 input is concatenated to the LSB e, of the unbiased
exponent F;, and padded with zeros: egF'000,. The fraction F' = f_ ;... f o3 of
the FP32 input is truncated before being concatenated to eg: egf_1 ... f_13. This
modified fraction is the input to the seed table previously described.

For FP16, the output of the seed table is rounded to fit the size of the output
fraction, before being packed into an FP16. For FP16, the output of the seed table is
padded with zeros before being packed.

The tentative exponent must be divided by two, change sign and have the correct:
Eump = b+ L—E“‘T_bj, where b is the bias, and is an odd number.

Ei, — eg 1s always even since it is computed by replacing the LSB of Ej, by 0,
and % consists of shifting £, by 1 position.

Etmp =b+ L_ EmQ b
—
En—e e —0D
A e
€y — b

]
=b—

:b—(Ein>> 1)‘*"7

|
b+1
:b+%—€o—(Ein>>1)

For FP16, the exponent is computed as 23 — eg — (FE;, >> 1), and for FP32 as
191 — ey — (Ein >> 1)

The fixed-point number LF is equal to 1 when F' = 0 and in (0.5, 1) otherwise.
If F' = 0, then the output of the tables is normalised, and the exponent does not need
to be adjusted Eoy = Eimp. Otherwise, the fraction must be normalised by one and
FEow = Eimp — 1.
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X6 X32
Unpack FP16 Unpack FP32
0005
/
0 1
FP32 mode
5 1 8
BT Multipartite Tables BT
exponent exponent

0...09
L~
Round
23
Pack FP16 Pack FP32
16 32
R16 R32

Figure 9.3: Proposed architecture for the seed operator. The red wires indicate the
path taken by the exponents.
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9.5 Conclusions

This chapter presents an architecture for functions of the square root family based
on the Newton-Raphson method. It’s main contribution is a seed table that directly
provides correct rounding to \/La in FP16, or a seed to compute \/La’ Va, * in one
Newton-Raphson iteration in FP32. An extra corrective iteration provides a correctly
rounded +/a, \/La in FP32.

The mixing of hardware and software approximation methods can result in extra
throughput in an accelerator containing a lot of parallel FMA operators, without
incurring a very large hardware cost.

Future works include treating the special case of the last seed table, described
in section 9.2.2. This case can easily be detected and corrected in hardware, where
the hardcoded value can be returned instead of the seed, raising a flag. In this
situation, a conditional move can choose either the result of the software iteration or
the hardware operator, depending on the value of the flag.

The implementation of subnormals is relegated to future works.

A comparison of this operator with one using a 9-bit seed and one more Newton-
Raphson iteration for each case should be carried out.

The software iterations would require more FMA operations, dissipating more
heat and limiting the throughput. A fair comparison is difficult as it must be made
on examples reflecting the distribution of FP16 and FP32 usages of the operator.
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The exponential function exp is defined as the function that is its own derivative
such that exp(0) = 1. Tt is the only differential function f on R that verifies
Ve,y € R, f(x +y) = f(x) x f(y) and f(1) = e, where e is Euler’s number
(e = 2.72). It is noted:

exp: R — R
x— e’

As described in earlier chapters, the exponential function is crucial to the func-
tioning of Al models and transformers. Its main use is in the softmax o function:

Tmax — L4
e max 2

o(7); = n—1

Zj:() eTmax —Tj
It is also a useful elementary function for scientific computing, enables to com-
pute the power function [102, 42, 38], or carry out Monte-Carlo simulations [43,

73].
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10.1 Implementing the exponential

10.1.1 Software implementations

When the first IEEE 754 standard [66] was published in 1985, a guideline of instruc-
tions on how to implement the exponential function in hardware and with IEEE 754
compliant arithmetic was published by Tang [115]. The paper presents both an
algorithm and the error analysis, and considers the various contributions to the error:
reduction, approximation and rounding.

Y

/ return +o0o
return 1.0

return 0.0

T i ‘

Xonin |X‘ < X Xmax

Figure 10.1: Special cases in the exponential function (Figure from [34]).

Special cases:

The first step in evaluating the exponential is to deal with special cases. As seen in
Fig. 10.1, the exponential returns a special value for most of the range of the input.
If the input X > X, then X = +inf, if X < X, e = +0.0, and if | X| < X,
then e = 1.0. For an IEEE 754 [68] floating-point number of format F(wg, wr)
(see section 2.4), the thresholds are computed with the following formulas:
Xmin = — Llog(2_2wE71+2_wF)J
Xonax = [log((2 = 270r) x 2777 71)]
X, =27wr?

Reduce the input:
The reduction step follow the idea that X can be reduced to F, integer and Y €

log(2) log(2) .
[—gT, gT} , such that:

X =Exlog(2)+Y = e* =28 x e

This formulation is such that £ can be the exponent of the result, and e¥ the
significand, albeit with some corrections. This is due to the fact that e¥” € [0.7,1.42],
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and might require to be shifted by one, causing the exponent £ to be off by 1. In
Tang’s paper, E is called j.

Y is separated into Y = A + Z such that Z < 27%, and A is a multiple of 2.
This operation is cheap, and can be done with shifts and masks. A formula based on
a first order Taylor approximation is used: ¥ = e? + e4 x (¢ — 1). In this case,
e’ is tabulated, and e? — 1 can be computed with a polynomial approximation. In
Tang’s paper, A is called j and k£ = 5 is used.

For more precise formats, a second order Taylor reduction can be used: ¢¥ ~
et et x (Z+ (e —Z —1)).

Approximate the rest of the exponential:

The formula e? — 1 is approximated using a polynomial function. In Tang’s paper,
Z is represented with a double-word representation: Z = Ry + Ry, where Ry, R»
are floating-point numbers matching the target precision. A polynomial function of
degree 6 is used for double precision, but this can change depending on the value
of k. If a second order reduction were used, a polynomial function with a smaller
degree can be enough.

Reconstruct the exponential:

The exponential is reconstructed according to the previous formulas: e* = 2F x
(et + et x (eZ —1))ore® =2E x (et + et x (Z + (e — Z —1))).

Progress made since

The article performs an error analysis proving that the algorithms computes a faith-
fully rounded exponential. The correctness was also proven formally in HOL [57],
and later in Coq using the same method [20].

Advances in polynomial approximation [12] and evaluation [85, 16] have enabled
better exponential implementations.

Some correctly rounded versions have been designed since, based on detecting
cases where the correct rounding had issues (near a midpoint), and recomputing the
value with more precision [127]. The algorithm was much slower when recomputing,
but this did not hurt too much the average execution time as those cases were
uncommon.

By studying those complicated cases [84, 33], it was determined that the most
significant bits needed to compute the correct rounding in double precision was 115
bits of precision on the polynomial approximation.

Similar implementations are used in the CORE-MATH [108] state of the art
open-source library for correctly rounded elementary functions.

10.1.2 Hardware exponential

The algorithm described in the previous section is the basis for the implementation
of the floating point exponential in hardware. The main difference is how step 3 is
implemented, as a polynomial approximation is not the only option for the evaluation
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of the reduced exponential function. This will induce variation in the reduction and
reconstruction steps, but the idea of the algorithm is very similar.

In hardware, it is necessary to always compute the different branches of an if
statement. This makes the correct rounding of the function always costly, instead of
only being slow for some inputs. While it could be desirable to implement correct
rounding, the target accuracy for this hardware exponential is faithful rounding.

Another specificity of the hardware implementation of the exponential function
is that it is possible to reduce the floating-point input to a fixed-point number. This
would not be practical in software as the fixed-point format needed is not of standard
format.

A different option [31] for the polynomial approximation step is to further reduce
the input in order to need to approximate a smaller interval of the exponential
function. This can be done recursively until the interval is small enough to tabulate.
This method requires the use of many rectangular multipliers, which are cheap for
an FPGA that does not have DSPs.

An iterative algorithm can also be used for an online high-radix implementa-
tion [45, 101, 102, 122]. Muller’s book [94] presents those algorithms and more,
like some CORDIC and iterative fixed-point algorithms on a small domain for the
computation of the exponential.

Exponential in FloPoCo:

The implementation in FloPoCo is described in detail in [36, 34], and illustrated by
Fig. 10.2.

The input is first converted into a fixed-point number. It’s MSB and LSB are
computed depending on the format of the output, using the values of X nin, Xiax, X1
(see Fig. 10.1). The implementation uses custom FloPoCo floating-point numbers
NFloat, that do not have subnormals and do not encode infinities or NaN using the
largest exponent binade. This induces a difference in the formula for the computation
of the thresholds.

Xmin = _Llog(272wE71+l)J
Xmax = [log((2 = 27"7) x 22"77)]
Xy =272

Multiple methods can be used to approximate ¢, depending on the precision
needed.

If the target precision is small enough such that e¥ can fit into the block RAM of
the target FPGA, then it is tabulated. Otherwise, a first or second order reduction can
be used, similar to the software implementation. FloPoCo uses a first order of reduc-
tion for half precision, and a second order for float and double. The approximation
of the function eZ — 1 or eZ — Z — 1 can either be tabulated if it is small enough, or
a polynomial evaluation with a Horner scheme is used.

In accordance to FloPoCo’s motto, "Computing Just Right", every bus and
truncated multiplier are the exact right size to not avoid superfluous computations
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Figure 10.2: Architecture of FPExp with a second order reduction (Figure
from [34]).
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and still meet the accuracy target of faithful rounding. The computations for this are
detailed in [34].

The framework also provides a test bench generator to check the operator, based
on the Multiple Precision Floating-Point Reliable Library (MPFR) [50] golden
model.

10.2 Implementation in FloPoCo of the exponential
in other number formats

10.2.1 Fixed-point in, floating-point out

The exponential in FloPoCo would only support the NFloat format, and was con-
tained all as a single operator in one file . The goal was to be able to compute
the exponential on the IEEE floating-point format, without duplicating code.

The first step was to separate the NFloat exponential into 3 parts (Fig. 10.3):

 All the automatic determination of architecture parameters are moved into a
HighLevel Arithmetic file ’ ExpArchitecture | This includes the MSB and LSB
of the fixed-point, k the size of A, d the degree of the approximation and g the
number of guard bits needed on the fixed-point to assure enough precision is
used.

* The core of the exponential is isolated: fixed-point in and pseudo floating-

point out. All the internal and interface parameters are already computed by
ExpArchitecture ‘ ’Exp takes as an input an unsigned fixed-point number,
computes its exponential as described earlier, and returns an exponent and
a fixed-point number, without the corrections necessary for it to be a proper
NFloat.

» A wrapper | FPExp | is created. It converts the floating-point input into the

required fixed-point for , and corrects the output so that it is a normalised
NFloat.

10.2.2 Support of IEEE floating-point numbers

Some modifications were required on Eprrchitecture‘ to support the fact that

subnormal output is possible with IEEE floating-point numbers. This changes the

computation of X ;,, which in turn modifies the MSB of the fixed-point format.
The wrapper | IEEEFPExp | (Fig. 10.4 for the IEEE floating-point numbers is

similar to | FPExp|. The subnormal inputs do not cause any complications as they
are smaller than the X threshold.

However, modifications are needed to support the subnormal outputs. A shifter
is used to denormalise the significand of the result when the exponent is smaller than
the minimum exponent of the format. This shifter also performs the correction shift
mentioned for NFloats.
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Figure 10.3: Separation of the exponential into 3 parts. Figure adapted from [34].
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Figure 10.4: Add FloPoCo support of IEEE floating-point format. Figure adapted

from [34].
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Once the significand is shifted to the correct placement, it is rounded, and the
exponent is updated. It is then packed into the IEEE floating-point format.

It is easier to compute correctly the IEEE flags than the correct rounding for the
exponential. If it were necessary to generate them, this would be the implementation
for the flag computation:

* Inexact: always raised, except when the input is 0, NaN or —oo, since
floating-point numbers are rational, and the exponential of a non-zero rational
is always irrational [94].

Invalid operation: raised if the input is a signalling NaN

Division by zero: never raised

Overflow: raised when the result is +oo

Underflow: raised when the result is subnormal or zero, except when the input
was —00

10.2.3 Mixed-Precision input

The Kalray accelerator required the use of a FP32 exponential. For machine learning
applications, the main use is softmax (see chap. 3). There, the input format FP16
could also be useful, but it was not crucial for the output format to also be FP16.
Since the exponential is defined by its output format, it is possible to add additional
input formats as long as they can be converted to the fixed-point input to .

A production operator was specified as needing to accept the following input
formats: FP32, BF16, FP16, FP§-ESM2 and FP8-E4M3. This was implemented
as another wrapper for , heavily inspired by as it would use the
same IEEE floating-point output logic. The various input formats were managed
ahead of the first shifter. This was implemented as a few muxes to extract the correct
significand, and constant adders to compute the correct shift value. The impact on
the design area was minimal.

10.3 Exploration of parameters for VLSI

The exponential in FloPoCo is optimised to be the best for FPGA. However, VLSI
offer different trade-offs, and especially is less efficient for the implementation of
tables.

This operator was synthesised on the TSMC 4nm node with Synopsys Design
Compiler.

The first test (Fig. 10.5) was to vary the parameter £ that decides of the size of
A, the input to the table storing e. For single precision, FloPoCo uses by default a
reduction of the second order, in which the function f(Z) = ¢Z — Z — 1 is evaluated
with a table (d = 0).

The size of the table containing e”* grows exponentially with k. If k is too big,
then the table containing e is large. There is still a trade-off, as when £ is too small,
then the table containing e? — Z — 1 starts to become large.
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The default value used in FloPoCo is £ = 9 for single precision, as it was the
best value when exploring the design space for FPGAs (see [36]). This also seems
to be the best value when synthesising for VLSI. This figure also shows that the
majority of the area of the operator is occupied by tables.

Area of the exponential operator depending on the parameter k

4,000

3,000 |

2,000 |

Area um?

1,000 |

6 7 8 9 10 11 12 13 14 15

—o— Total Area- e- Table Area

Figure 10.5: Parameter exploration of the exponential architecture, with a reduction
of the second order, for varying k and f(Z) = ¢ — Z — 1 approximated by a table

(d =0).

Since it is likely the operator can be reduced in size by reducing the number
of tables, it is natural to also explore higher order of approximation for f(Z) =
e? — Z — 1 (Fig. 10.6). When k is large, the input to the function evaluator is small,
and the polynomial approximation does not need too high degrees to work. This is
why there is no result for d = 2 when k£ > 7, and for d = 1 when &£ > 11.

It is interesting to see that for k > 9, the size of the table evaluating e is so large
that it overtakes the efficiency of the approximation of Z. In that case, the methods
for d = 0 and d = 1 give very similar results.

This exploration shows that the best architecture of a single precision exponen-
tial for VLSI is for £ = 8,d = 1, while for the FPGA it was £k = 9,d = 0 as
explored in [36]. This is not surprising as VLSI has more available optimisations for
multipliers, and is worse at implementing tables than FPGA.

10.4 Conclusions

The IEEE-754 standard [68] does not require that the exponential function be present
for a CPU to be IEEE compliant, but encourages its implementation to be correctly
rounded. The proposed exponential is not IEEE-754 compliant, but merely accepts
IEEE floating-point numbers as inputs and outputs. It does not generate IEEE flags,
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Area of the exponential operator depending on the parameter k and d
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Figure 10.6: Parameter exploration of the exponential architecture, with a reduction

of the second order, for varying k and f(Z) = e? — Z — 1 approximated with an
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and is faithfully rounded. This exponential function is implemented in the vector
acceleration unit of Kalray’s MPPA, which does not enable many IEEE flags since
it is difficult to be sure which element of the vector raised the flag. Moreover, 8 or
16 instances of the exponential will be included in each Processing Element, that is
either 640 or 1280 instances in a whole MPPA. A lighter implementation is preferred,
and faithful rounding is still an acceptable precision for most applications.

FixInFPOUtExp.cpp X }sfix(MSBin, LSBi)

( S L. _
convert to sign-magnitude a :r__*: ExpArchitecture.cpp:
| uof | Xal I E Compute LSB, MSB, !
g fix| }ufix(MSB, LSB) Tk d, :
||F B : :
U — Exp.cpp A
ufix(wg, 0) M }ufix(0,LSB)
:| normalise-round-pack

XFloat(wg, wr)

Figure 10.7: What FloPoCo support of fixed-point in, floating-point out could look
like. The floating-point format in output could either be NFloat or IEEEFloat, it
would just change the computation of MSB. Figure adapted from [34].

In future works, it would be interesting to implement a fourth wrapper for the
exponential to compute a generic fixed-point in, floating-point out (Fig. 10.7). This
would require careful handling of the sign of the fixed-point number.

In machine learning, the output of a matrix multiplication can be a large fixed-
point accumulator, and a softmax computation is performed on the outputs. It
could be useful to compute the exponential of the accumulator directly, without
needing to convert it in floating-point and then fixed-point again. This would be a
very interesting combination, however it is impractical in the Kalray system as the
fixed-point accumulator of the matrix-multiplication exists as a internal format in
the matrix unit, and the exponential in the vector unit.



Conclusion and Future Works

In the era where the impending limits of Moore’s Law meet the Al boom, the impor-
tance of efficient hardware design is higher than ever. Pressures to design cheaper
operators that compute more FLOPs have often resulted in designs sacrificing accu-
racy, sometimes even without significant area improvement. This thesis specifically
focused on designing operators for matrix multiplication, broken down into dot
products, and the implementation of functions.

This thesis proposes three different architectures for dot product operators, com-
paring them depending on various parameters: precision of the formats used, size of
the dot product, and what accuracy the applications required.

For machine learning, specifically deep neural networks, the dot product operate
on very small number formats and can be optimised as such, often using the Full-
precision Fixed point method of adding multiple floating point. This is a variant of
the classic Kulisch accumulator [78]. Synthesis allows comparison of the implemen-
tation cost of various small floating-point formats used in machine learning: two
FP8 variants, INT8, four Posit8 variants and FP16, showing promising hardware
cost for FP8.

A Full-precision architecture for FP16 can be modified to provide moderately
accurate dot-product computations for intermediate number formats. Instead of
a Full-precision fixed-point accumulation method, a Truncated floating-point ac-
cumulation is used to support formats with larger ranges without increasing the
accumulation size. This enables BF16 support without increasing the cost of the
multiplier and FP32 support can be added using double-word techniques common in
software.

This thesis also presents a correctly rounded dot product architecture able to
operate on the larger number formats used for scientific computing. It compares
with two state-of-the-art method, the Full-precision Fixed point method, and Tao’s
method [116], expanding Tao’s architectures with subnormal support and optimising
subcomponents like the alignment computation. For a dot product and add of size
16 on FP64 numbers, comparison shows an improvement of 45% compared to both
state-of-the-art methods.

In the area of function approximation, this thesis proposes iterative square root
algorithms with partial hardware acceleration, allowing versatility in the operators
(\/L57 Vv, %), the supported formats and the accuracy. The software refinement steps
enable to evaluate trade-offs when coding the application, allowing to optimise for
various needs.

Exploration of the parameter space for state-of-the-art exponential architectures
shows that the table-to-multiplier trade-off for VLSI is a bit different than for FPGAs,
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but still closer than one might think, given that the basic gate for FPGAs is the Look
Up Table.

Future Works

Studying the Impact of Truncated Floating-Point Accumulators on Computa-
tions

Most GPUs implement their dot products using a truncated floating-point accumula-
tor described in Chapter 6. This architecture computes an inaccurate result, which
works fine for machine learning applications but is problematic to use for scientific
computing applications. It it is hard to predict, limit and control the errors made
by the architecture [47, 46]. Studies have for instance revealed monotonicity issues
in the operator [92]. Efficient usage of those operators often stems from a in-depth
knowledge of their architecture.

Small Precision Dot Products with Scaling

In machine learning models, working with quantised 8-bit floating-point numbers
requires scaling steps. Some formats specify [104] a version of the FP8 formats that
also include a shared 8-bit external exponent. This exponent F.y, is encoded exactly
like FP32 exponents are. It is shared for a vector of FP8 numbers X = (Xi)o<i<ns
where X; are FP8 numbers used to represent the value x; x 2Fex that have a much
larger range. LLMs perform best when the vector is small, that is not too many
numbers share the same exponents, with the usual size N of the vector being 4 or 8.

Since an operator typically inputs one shared exponent Ex . for all the inputs
(X;), and another Ey .y for all the inputs (Y;) have, the size of the input vectors is
limited to 4 or 8.

Some recent architectures [88] include this scaling in the computation of the dot
product, and achieve a correctly rounded result. The scaling is applied once, when
adding to the FP32 addend Z, because the scaling can be factored out of the sum of
products:

n—1 n—1
R=7Z+Y (w; x 25 x (y; x 2et) = 7 4 2FxectBrec 5 N " g ey,
=0 =0

This architecture is an intermediate step in terms of precision, it cannot accu-
mulate exactly as many products as the full precision fixed-point architecture from
Chapter 5, but does not require as much expensive alignment logic as the truncated
floating-point architecture from Chapter 6 since the FP8 sum of product is computed
with a full precision fixed-point accumulator, and is only later seen as a floating-point
number. The output format, a FP32 floating-point number, is also much easier to
manipulate than the larger internal formats implemented in those chapters, although
it sacrifices precision.

This architecture deserves to be added to the cost comparison carried out in
section 6.7. The architecture from [88] was compared in that paper to the one



presented in [29] (which Chapter 5 expands upon), and future works could also
compare it to the truncated floating-point method commonly used in GPUs.

Adding scaling to Kalray’s accelerator is a challenge for many reasons. The FP8
dot product operators in Kalray’s accelerator have large input vectors (N = 32). A
question is: is 32 still fine-grained enough for LLMs ? The micro-scaling format
is also very specific to vector operations. Another challenge is to define to define
scaling formats for matrix operations. Addressing these problems is necessary to run
inference for models that were trained on other platforms.

Proving the Correctly Rounded Dot Products on Large Precision

The large precision dot product operators presented in Chapter 7 has been extensively
tested, but they would benefit from being formally proven to round correctly.

Those operators would be used [65] to perform Error Free Transforms and
improve the error bounds of some operations in double word. Using an unproven
operator in a proven algorithm is not very satisfying.

Correctly Rounded Multipartite Tables without ILPs

Chapter 8 explains the use of Integer Linear Programming (ILP) to obtain correct
rounding in multipartite architectures. The Lossless Differential Table Compression
(LDTC) method can also be used to obtain correct rounding without needing to use
optimisation models. Some background work during this thesis was dedicated to
trying to extend the LDTC method of filling tables to replace the ILP for correctly
rounded multipartite tables, without much success due to the little amount of time I
was able to dedicate to it. At first sight, the multipartite problem is not NP-Complete
and using ILP methods to solve may not be necessary.

The modifications carried out until now managed to remove the optimisation of
the size of the table (MSB and g for each table) outside of the ILP model, and into
the enumeration of the architecture. This reduces the ILP model to just a satisfiability
problem without making the overall method take more time, nor less.

Being able to fill the multipartite tables without an ILP model should speed up
the method and hopefully scale to larger precisions.

Publications and patents

This thesis lead to several publications and patents:

e Chapter 5: This work was presented as a conference paper at the Digital
Systems Design (DSD) conference in 2023 [29].

» Chapter 6: This work was presented as a conference paper at the IEEE Inter-
national Symposium on Computer Arithmetic (ARITH) in 2025 [27]. It also
resulted in a patent [26].

* Chapter 7: This work was presented as a conference paper at the IEEE In-
ternational Symposium on Computer Arithmetic (ARITH) in 2023 [28]. It
also resulted in a patent [25]. Use of this work as well as some minor extra



contributions was made in a conference paper presented at High Performance
Extreme Computing (HPEC) conference in 2023 [40].

» Chapter 8: This chapter describes contributions from before my thesis, pre-
sented in the International Conference on Field-Programmable Technology
(ICFPT) in 2022 [24], as well as some minor contributions to the paper [64]
that is not yet published.

 Chapter 9 is yet to be submitted to a conference.
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This thesis has lead to multiple contributions to the FloPoCo framework. While
most of the operators coded were not open-sourced by Kalray, some subcomponents
were published in the FloPoCo repository. In particular, two hardware sorts evaluated
in the context of the operator from Chapter 7 were added, as well as an exponential
that supports IEEE numbers (in particular subnormals) from Chapter 10.

Other open-source contributions lie in modifications to the FloPoCo frame-
work generating the operator, enabling the use of FloPoCo to generate VHDL for
VLSI instead of only FPGA. This includes the creation of a new FloPoCo target:
ManualPipeline.

A.1 Pipelining in FloPoCo

A.1.1 Automatic Pipelining

Operators in FloPoCo are written such that each operation is paired to the delay it
takes to carry it out once all the inputs are ready. Since the actual delay depends on
the FPGA target, generic helper functions are used to abstract the individual values:
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* logicDelay (1) : The delay of a simple logic computation with ¢ bits of
input (using Look Up Tables LUTs).

* adderDelay (1) : The delay of adding two integers that are of width ¢,
using LUTs.

* eqComparisonDelay (i) : The delay of testing if two vectors of width ¢
are equal.

* ltComparisonDelay (i) : The delay of testing which of two integers of
width ¢ is the biggest.

Different FPGA targets are described in FloPoCo, supplying the information for
different parameters, like the number of inputs to each LUT, the delay of a LUT gate,
the size of the BRAMS,,. ..

0ons

B O N

Ons

Figure A.1: Example of a operator graph for a MUX, with dummy operation times.

The FloPoCo scheduler [72] labels dependencies between signals with the time
needed execute each computation. Each computation can be seen as a node in a
directed acyclic graph, where the operands are the input edges, and the result the
output edge of each node. One can compute at which time an output signal is ready
by adding the delay of the computation creating it to the input which is ready the
latest (Fig. A.1). An input signal is considered ready at time O, and the value of
the output signal enables to compute the total latency of the operator. The longest
path, in red in the figure, is called the critical path. This graph can be generated by
FloPoCo using the dependencyGraph command line option.

When a path becomes too long to fit in the timing budget set by the target
frequency, a pipeline stage is added so that the signal is computed at the next cycle.
The scheduling method used is As Soon As Possible, this means that as soon as the
path is too long, a pipeline register is added.

When a signal sig is pipelined, different copies of this signal are created for
their use in subsequent cycles : sig_d1 (signal delayed by 1 cycle), sig_d2,
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sig_da3, etc...The scheduler keeps track of the copies of the signals, to make
sure that computations use synchronised data. Pipelining in FloPoCo is correct by
construction: if a circuit works unpipelined, it works pipelined.

A.1.2 Manual Pipelining for VLSI

In FPGAs, not many different basic bricks are available, making automatic pipelining
a great option. However, doing the same for VLSI would be time consuming, as all
the different standard cells can be used with different options depending on the drive
and how fast they should be.

In addition, while pipelining is free for FPGAs as there is a register after each
LUT, this is not the case for VLSI. It might even be desirable to use expensive fast
gates to cram a large number of operations in a pipeline stage just to reduce the
number of registers used. This is for example the case in the matrix multiplication
operators, where pipelining between the large shift and the addition tree would be
very expensive. Reducing the number of registers reduces the power consumption of
the final operator.

All those possibilities make it very hard to automatically pipeline for VLSI the
same way as for FPGAs. It is more realistic to pipeline manually and let the synthesis
figure out if the pipeline holds. However, it is still interesting to use the power of the
FloPoCo scheduler, as the pipeline is correct by construction.

A new target is created to this effect, called ManualPipeline. It sets to 0 all
the previously described delays, and introduces a new function: cycleDelay (1)
that describes a signal taking ¢ cycles to compute. This forces the scheduler to
pipeline just after a cycleDelay was used, and still profits from the correct by
construction pipelining of FloPoCo.

The issue with this solution arises when subcomponents need to be pipelined.
This was mostly the case for Shifters, as multiple types are needed at different stages
of a computation. The solution used was to avoid pipelining shifters, however that
could become necessary to meet latency demands. Possible future works would be
adding a new shifter type, or a hidden parameter to the existing shifter, that enables
to manually pipeline at given shift stages.

A.2 Various Modifications to Code Generation

A.2.1 Signal Renaming

The default naming of signals is to write of how many cycles this signal is delayed:
if signal sig was defined in the second cycle of an operator, then sig_d2 is a copy
of that signal at the fourth cycle.

The new command line option NameSignalByCycle changes this to rename
all the signals by their cycle instead of a delay. The previous example sig would be
renamed during scheduling as sig_c1 for its first occurrence when defined in the
second cycle (as cycle numbers start at 0), and sig_c3 for its copy at the fourth
cycle.
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This was necessary to better interface with synthesis scripts and naming conven-
tions at Kalray.

It later turned out to be also very useful in the optimisation of the pipeline of
legacy operators targeting FPGAs. For instance, one cycle was saved in the floating-
point adder. This absolute cycle information is now also used by default in the
standard output of FloPoCo:

./flopoco FPAdd we=8 wf=23 frequency=400

**%x Final report *xx

Output file: flopoco.vhdl

Pipeline constructed using approximate timings for target
DummyFPGA @ 400 MHz

| -—Entity RightShifterSticky24_by_max_26_Freqg400_uid4
| R: (cl, 1.630000ns) Sticky: (c2, 1.620000ns)

| -—Entity IntAdder_27_Freqd400_uid6

| R: (c3, 1.140000ns)

| -—Entity Normalizer_ Z_ 28 28 28 Freq400_uid8

| Count: (c5, 1.580000ns) R: (c5, 2.130000ns)

| -—Entity IntAdder_34_Freqg400_uidll

| R: (c6, 1.710000ns)

Entity FPAdd_8_23_Freq400_uid2

R: (c¢7, 0.510000ns)

A.2.2 Write Enable

Another contribution was a rehaul of the WriteEnable option. Previously, this
was added to pause the operator by blocking all the pipeline stages at once.
The new write enable adds one signal per pipeline stage, enabling to pause all the
stages independently. The previous functionality stil exists as a toggleable option.
When an operator finishes a last computation, this technique helps save dynamic
power keeping the transistors in the same state until they are used again, effectively
flushing the pipeline with minimal power consumption.

A.2.3 Staggered Inputs and Outputs, and their Test Bench

In computation units, it is often desirable to have some late inputs (in terms of cycles),
as well as have some early outputs. FloPoCo could already create early outputs, but
this would break the test bench operator, that assumed all the outputs came out at the
same cycle.

An optional delay was added to the input declaration to be able to make them
arrive a set amount of time late: for example cycleDelay (2) to arrive on cycle
2, but any of the other delay functions can be used.

The test bench operator was then modified to accommodate this feature. If an
input is late, then the test bench pipelines it before feeding it in the operator. If an
output is early, it is pipelined before it is compared to the expected result. While
FloPoCo’s pipeline is correct by construction, the framework also urges us to check
everything ourselves, and the test bench operator is central in this check.
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Many thanks to Florent de Dinechin, Martin Kumm, and Pierre Cochard who
were the main FloPoCo maintainers during my thesis, as well as all past, present and
future contributors. FloPoCo greatly simplified VHDL code generation for all the
operators designed during my thesis. The flexibility in the pipeline generation has
saved me a lot of time when going back and forth with the Synthesis, trying to make
my operators fit in the target number of cycles.
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